• Title/Summary/Keyword: electrostatic field

Search Result 303, Processing Time 0.026 seconds

Space Modulation of the Channel Current Density in IGFET by the Polarized Metal Gates (IGFET 채널 전류 밀도의 공간 변조 현상에 관한 연구)

  • 라극환
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.4
    • /
    • pp.31-36
    • /
    • 1984
  • Various efforts have been dedicated to obtain the negative impedances in microwave frequencies with semiconductor devices by many scientists for f: some passed decades, and as a result, many solid state microwave devices have been developed. But they all have much less maximum power ratings with respect to the vaccum tubes. In this paper, a MOSFET is proposed and studied, which have a periodic structure of multigates on the semiconductor via insulator. The hish electric field in the channel induces a voltage distribution on the gates by electrostatic coupling, and the polarization so induced between the gates is able to give a space modulation of the velocity of carriers or the current density in the channel, and as a natural consequence, a microwave amplifier with higher power ratings can be expected.

  • PDF

Use of Conformational Space Annealing in Molecular Docking

  • Lee, Kyoung-Rim;Czaplewski, Cezary;Kim, Seung-Yeon;Lee, Joo-Young
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.221-233
    • /
    • 2004
  • Molecular docking falls into the general category of global optimization problems since its main purpose is to find the most stable complex consisting of a receptor and its ligand. Conformational space annealing (CSA), a powerful global optimization method, is incorporated with the Tinker molecular modeling package to perform molecular docking simulations of six receptor-ligand complexes (3PTB, 1ULB, 2CPP, 1STP, 3CPA and 1PPH) from the Protein Data Bank. In parallel, Monte Carlo with minimization (MCM) method is also incorporated into the Tinker package for comparison. The energy function, consisting of electrostatic interactions, van der Waals interactions and torsional energy terms, is calculated using the AMBER94 all-atom empirical force field. Rigid docking simulations for all six complexes and flexible docking simulations for three complexes (1STP, 3CPA and 1PPH) are carried out using the CSA and the MCM methods. The simulation results show that the docking procedures using the CSA method generally find the most stable complexes as well as the native -like complexes more efficiently and accurately than those using the MCM, demonstrating that CSA is a promising search method for molecular docking problems.

  • PDF

Bacterial Effects on Geochemical Behavior of Elements : An Overview on Recent Geomicrobiological Issues (원소의 지구화학적 거동에 미치는 박테리아의 영향 : 지구미생물학의 최근 연구 동향)

  • 이종운;전효택
    • Economic and Environmental Geology
    • /
    • v.33 no.5
    • /
    • pp.353-365
    • /
    • 2000
  • After their first appearance on Earth, bacteria have exerted significant influence on geochemical behavior of elements. Numerous evidence of their control on geochemistry through geologic history has been observed in a variety of natural environments. They have mediated weathering rate, formation of secondary minerals, redox transformation of metals and metalloids, and thus global cycling of elements. Such ability of bacteria receives so considerable attention from microbiologists, mineralogists, geologists, soil scientists, limnologists, oceanographers, and atmospheric scientists as well as geochemists that a new and interdisciplinary field of research called 'geomicrobiology' is currently expanding. Some recent subjects of geomicrobiology which are studied extensively are as follows: 1) Functional groups distributed on bacterial cell walls adsorb dissolved cations onto cell surfaces by electrostatic surface complexation, which is followed by hydrous mineral formation. 2) Dissimilatory metal reducing bacteria conserve energy to support growth by oxidation of organic matter coupled to reduction of some oxidized metals and/or metalloids. They can be effectively used in remediating environments contaminated with U, As, Se, and Cr. 3) Bacteria increase the rate of mineral dissolution by excreting proton and ligands such as organic acids into aqueous system. 4) Thorough investigation on the effects of biofilm on geochemical processes is needed, because most bacteria are adsorbed on solid substrates and form biofilms in natural settings.

  • PDF

Experimental Study on the Enhancement of Particle Removal Efficiency in Spray Tower Scrubber Using Electrospray

  • Kim, Hyeok-Gyu;Kim, Hong-Jik;Lee, Myong-Hwa;Kim, Jong-Ho
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.2
    • /
    • pp.89-95
    • /
    • 2014
  • There have been a lot of efforts to keep permissible emission standards and to reduce the amount of emitted air pollutants. There are several air pollution control equipments, however, wet scrubber is used to remove particulate matters and gaseous pollutants simultaneously, even if it has low collection efficiency in the particle size less than $5.0{\mu}m$. To overcome this problem, we introduced a spray tower scrubber with an electrospray system which a high voltage was indirectly applied. We found that collection efficiency of fine particles in the electrospray system was improved by increasing electrical field strength and the ratio of liquid-gas flow rate (from 41% to 84% for $0.3{\mu}m$ particles). In addition, a number of small droplets generated from an electrospray system led high collection efficiency, resulting from electrostatic attraction between droplets and particles and higher collision frequency. Therefore, we can conclude that the introduction of an electrospray system is quite effective to increase the particle removal efficiency of a spray tower scrubber.

Charicteristics of HF 10-cm Type Grid Ion Source for Inert and Chemically Reactive Gases.

  • Chol, W.K;Koh, S.K;Jang, H.G;Jung, H.J;Kondranin, S.G.;Kralkina, E.A.;Bougrov, G.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1996.02a
    • /
    • pp.102-102
    • /
    • 1996
  • This paper represents a new type low power High Frequency technological ion source (HF TIS) for ion - beam processing: the surface modification of materials, cleaning of surface, sputtering, coating of thin films, and polishing. The operational principle of HF TIS is based on the excitation of electrostatic waves in plasma located in the external magnetic field. Low power HF TIS with diameter 92 rom gives the opportunity to obtain beams of inert and chemically reactive gases with currents range from 5 to 150 mA (current density $0.015\;~\;3.5\;mA/\textrm{m}^2$) and ion beam energy 100 ~ 2500 eV at a HF power level 10 ~ 150 W. Three grid concave type ion optical system (IOS) is used for extraction and formation ofion beam.n beam.

  • PDF

Particle Agglomeration of a Bipolar Charging System with a Control Grid (제어전극을 갖는 쌍극성 하전장치의 입자응집 특성)

  • Moon, Jae-Duk;Ahn, Chang-Jin
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.10
    • /
    • pp.465-470
    • /
    • 2005
  • In this paper. an experimental study, for method of increasing the efficiency of electrostatic precipitator for the collection of submicron-sized particles has been studied. All AC electric field was used to induce agglomeration of bipolory charged Particles. .4 bipolar AC-agglomeration system. consisted with a multineedle-mesh discharge system with a control grid, was proposed and investigated. Systematic experiments were carried out to investigate the agglomeration ratio of the AC-agglomeration system as a function of the different grid spacings and grid resistances for the submicron particles generated from liquid prorhane gas burning. The agglomeration ratios, which indicate the particle numbers before and after agglomeration of the test particles in number concentration base, were found to be 0.87, 1.80, 3.86, 9.50 and, 11.00 times for the particle sizes of 0.3. 0.5, 0.7, 1.0, and 2.0$\mu$m at applied voltage of 3.5kV, respectively which showed that the fine particle numbers were decreased while the larger particle numbers were increase greatly.

Characteristics of Particle Deposition onto Cleanroom Wall Panel for Varying Particle Charging Rates (입자하전량에 따른 클린룸 수직벽체로의 입자침착 특성)

  • Kim, Jong-Jun;Noh, Kwang-Chul;Sung, Sang-Chul;Baek, Sun-Ho;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.725-730
    • /
    • 2008
  • In this study, we found out charged particle's deposition characteristic by experiments of $0.5{\mu}m$, $1.0{\mu}m$, $3.0{\mu}m$ size particle's concentration decay. We carried out the experiments on charged particle deposition onto the vertical cleanroom wall panel and some other fundamental experiments. The particle deposition mechanism is consist of sedimentation, convection, diffusion, thermophoresis, electrostatic and so on. Particle size determines mainly working deposition mechanism. The charged particle is made with corona discharge that are constituted field charging and diffusion charging. In addition, this combinational mechanism is called combined charging. The type of corona discharge determines quantity of particle electrical charge. In conclusion, we assumed that quantity of particle electrical charge accelerations deposition velocity onto the vertical cleanroom wall panel and proved it. And we figured out particle's deposition characteristic through compared between our experiment's results.

  • PDF

CoMFA vs. Topomer CoMFA, which One is better a Case Study with 5-Lipoxygenase Inhibitors

  • Gadhe, Changdev G.
    • Journal of Integrative Natural Science
    • /
    • v.4 no.2
    • /
    • pp.91-98
    • /
    • 2011
  • Quantitative structure-activity relationships (QSAR) have been applied for two decades in the development of relationships between physicochemical properties of chemical substances and their biological activities to obtain a reliable statistical model for prediction of the activities of new chemical entities. The fundamental principle underlying the QSAR is that the structural difference is responsible for the variations in biological activities of the compounds. In this work, we developed 3D-QSAR model for a series of 5-Lipoxygenase inhibitors, utilizing comparative molecular field analysis (CoMFA) and Topomer CoMFA methodologies. Our developed models addressed superiority of Topomer CoMFA over CoMFA. The CoMFA model was obtained with $q^2$=0.593, $r^2$=0.939, $Q^2$=0.334 with 6 optimum number of components (ONC). Higher statistical results were obtained with the Topomer CoMFA model ($q^2$=0.819, $r^2$=0.947, ONC=5). Further robustness of developed models was checked with the ANOVA test and it shows F=113 for CoMFA and F=162.4 for Topomer CoMFA model. Contour map analysis indicated that the more requirement of electrostatic parameter for improved potency.

Site-directed Mutagenesis of Arginine 13 Residue in Human Glutathione S-Transferase P1-1

  • Koh, Jong-Uk;Cho, Hyun-Young;Kong, Kwang-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.5
    • /
    • pp.772-776
    • /
    • 2007
  • In order to study the role of residue in the active site of glutathione S-transferase (GST), Arg13 residue in human GST P1-1 was replaced with alanine, lysine and leucine by site-directed mutagenesis to obtain mutants R13A, R13K and R13L. These three mutant enzymes were expressed in Escherichia coli and purified to electrophoretic homogeneity by affinity chromatography on immobilized GSH. Mutation of Arg13 into Ala caused a substantial reduction of the specific activity by 10-fold. Km GSH, Km DCNB and Km EPNP values of R13A were approximately 2-3 fold larger than those of the wild type. Mutation of Arg13 into Ala also significantly affected I50 values of S-methyl-GSH that compete with GSH and ethacrynic acid, an electrophilic substrate-like compound. These results appeared that the substitution of Arg13 with Ala resulted in significant structural change of the active site. Mutation of Arg13 into Leu reduced the catalytic activity by approximately 2-fold, whereas substitution by Lys scarcely affected the activity, indicating the significance of a positively charged residue at position 13. Therefore, arginine 13 participates in catalytic activity as mainly involved in the construction of the proper electrostatic field and conformation of the active site in human GST P1-1.

Effects of the Micro-hole Target Structures on the Laser-driven Energetic Proton Generation

  • Pae, Ki-Hong;Choi, Il-Woo;Hahn, Sang-June;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.48-52
    • /
    • 2009
  • Micro-hole targets are studied to generate energetic protons from laser-thin foil targets by using 2-dimensional particle-in-cell simulations. By using a small hole, the maximum energy of the accelerated proton is increased to 4 times higher than that from a simple planar target. The main proton acceleration mechanism of the hole-targets is the electrostatic field created between the fast electrons accelerated by the laser pulse ponderomotive force combined with the vacuum heating and the target rear surface. But in this case, the proton angular distribution shows double-peak shape, which means poor collimation and low current density. By using a small cone-shaped hole, the maximum proton energy is increased 3 times higher than that from a simple planar target. Furthermore, the angular distribution of the accelerated protons shows good collimation.