• Title/Summary/Keyword: electrostatic field

Search Result 303, Processing Time 0.027 seconds

Electrostatic Adsorption of Uniformly Charged Electrolytes within Like-charged Electrodes

  • Jang, Seanea;Shin, Ghi Ryang;Kim, Soon-Chul
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1315-1323
    • /
    • 2018
  • The classical-fluids density functional theory has been developed for studying the structural and the electrical properties of electrolyte solutions containing uniformly charged hard-spherical ions. The modified fundamental-measure theory has been used to evaluate the hard-sphere contribution. The mean-field approximation has been employed to calculate the cross correlation between the hard sphere contribution and the Coulomb interaction. The Poisson equation for ions carrying charges that are spatially separated has been solved. The present theory shows reasonably good agreement with the corresponding Monte Carlo simulation results. The calculated results show that the attraction between like-charged planar surfaces is the result of the intra-ionic correlation and depends strongly on the ion size, valence, mole fraction, and charge distribution of electrolytes.

The 3D-QSAR Studies on the Indolinones Derivatives of PTKIs: CoMFA& CoMSIA

  • Kwack, In-Young;Kim, Chan-Kyung;Hyun, Kwan-Hoon;Lee, Bon-Su;Park, Hyung-Yeon
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.186.3-186.3
    • /
    • 2003
  • The three-dimensional quantitative structure-activity relationship (3D-QSAR) study using the comparative molecular field analysis (CoMFA) was performed on indolinones derivatives as an inhibitor of the protein tyrosine kinase of fibroblast growth factor receptor (FGFR). In the training set, twenty-four indolinone derivatives were aligned based on the indole fragment and the steric and electrostatic fields were included in the analysis. The best predicted model showed the cross-validated coefficient (r$^2$$\sub$cv/) of 0.804 and bib-cross validated coefficient (r$^2$) of 0.942. The CoMFA study can be used to predict several new inhibitors of the FGFR.

  • PDF

Control of Bacterial Adhesion and Biofilm Using Electric Field (전기장을 이용한 미생물 부착과 생물막 제어)

  • Shim, Soo-Jin;Kim, Choon-Soo;Yoon, Je-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.9
    • /
    • pp.692-700
    • /
    • 2011
  • The use of electric field has been studied as an alternative for biofilm control dominated by disinfectants and antibiotics. This technology would be advantageous in the environmental respect that biofilm can be controlled based on electron transfer, not using chemical disinfectants and antibiotics. Control mechanisms which were reported by earlier studies are organized as; (1) bacterial adhesion control by electrostatic repulsion at a negative current, (2) bacterial adhesion control using bacterial motion and (3) bacterial inactivation by direct oxidation at a positive current, (4) bioelectric effect leading to biofilm inactivation. In this review article, we summarized the technologies for biofilm control using electric field and provided some application examples from previous studies.

CoMFA Analysis on Inhibitory Effect of $3{\beta}$-Hydroxy-12-oleanen-28-oic Acid Analogues on PTP-1B Activity and Prediction of Active Compounds ($3{\beta}$-Hydroxy-12-oleanen-28-oic Acid 유도체들의 PTP-1B 저해활성에 대한 CoMFA 분석과 활성 분자들의 예측)

  • Kim, Sang-Jin;Kim, Se-Gon;Sung, Nack-Do
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.2
    • /
    • pp.109-115
    • /
    • 2008
  • The comparative molecular field analyses(CoMFA) models between the substituents with changing groups($R_1{\sim}R_4$) of $3{\beta}$-hydroxy-12-oleanen-28-oic acid derivatives as substrate molecule and their inhibitory activities($pI_{50}$) against protein tyrosine phosphatase(PTP)-1B were derived and discussed quantitatively. The optimized CoMFA F1 model have best predictability and fitness($r^2_{cv.}=0.654$ and $r^2_{ncv.}=0.995$). The order of contribution ratio (%) with CoMFA fields on the inhibitory activities was a steric field(53.0%), electrostatic field(36.2%) and hydrophobic field(10.8%). From the analytical results of CoMFA contour maps, the inhibitory activities were dependent on the R4 group in substrate molecules. Particularly, the new active compounds(P1 & P2) with the inhibitory activity against melanin synthesis were expected.

A study on the electrostatic and magnetic flux cut off effect using anti-magnetic material (반자성 물질에 의한 전자기차단효과에 관한 연구)

  • Hwang, Yoon-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.8
    • /
    • pp.1473-1480
    • /
    • 2008
  • Bisumus has a low melting point, making it easier to handle. This allows us to test what type of effect diamagnetism has on electro static and magnetic field shields. However, the actual materials for experimentation have only ever been manufactured cylindrically, and so there have been no recorded cases of measurements to this effect. To understand what kind of effect pure bisumus as diamagnetism has on electro static and magnetic shields in comparison to other materials, bisumus, along with copper, aluminum and iron 스텐도, were used to make a cylinder each. These cylinders were then used to measure and compare the electro static shield and magnetic shield at different bands of frequencies, starting from a low frequency. As shown on the graph/chart/diagram, the best results were recorded for copper and bisumus as diamagnetism in an electro static field. In terms of magnetic shielding, iron provided the best results, as expected, whereas bisumus displayed minimal effect.

A Dynamic Simulation on the Squeezing Flow of ER Fluids (전기유변 유체의 압착유동에 대한 동적 수치모사)

  • 김도훈;주상현;안경현;이승종
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.82-90
    • /
    • 1999
  • Electrorheological(ER) fluid is a material that shows the dramatic change of rheological properties under an electric field and responds reversibly in a few milliseconds. ER fluid's response to an electric field along with its fast switching capability allows ER devices to be precisely controlled. The real application with ER fluid, however, has many limitations to be overcome; temperature fluctuation, moisture, dust, aggregation, precipitation, and low yield stress, for example. The magnitude and the characteristics of yield stress of ER fluid plays an important role in practical applications. In this research, a dynamic simulation on the squeezing flow of the ER fluid was carried out. Numerical simulation on isolated chains was performed to find out the effect of hydrodynamic and electrostatic force depending on the chain location, the squeezing rate, and the chain structure. Suspension model that is composed of a large number of particles was also investigated. The increase of normal stresses as well as the existence of a yield stress at an earlier stage could be observed, and the effective control of the normal stresses could be achieved at an optimal condition of the hydrodynamic force and the electrostatic force.

  • PDF

Kr Atoms and Their Chlustering in Zeolite A

  • Im, U Taek;Jang, Jang Hwan;Jeong, Gi Jin;Heo, Nam Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.1023-1029
    • /
    • 2001
  • The positions of Kr atoms encapsulated in the molecular-dimensioned cavities of fully dehydrated zeolite A of unit-cell composition Cs3Na8HSi12Al12O48 (Cs3-A) have been determined. Cs3-A was exposed to 1025 atm of krypton gas at 400 $^{\circ}C$ for four days, followed by cooling at pressure to encapsulate Kr atoms. The resulting crystal structure of Cs3-A(6Kr) (a = $12.247(2)\AA$, R1 = 0.078, and R2 = 0.085) has been determined by single-crystal X-ray diffraction techniques in the cubic space group Pm3m at $21(1)^{\circ}C$ and 1 atm. In the crystal structure of Cs3-A(6Kr), six Kr atoms per unit cell are distributed over three crystallographically distinct positions: each unit cell contains one Kr atom at Kr(1) on a threefold axis in the sodalite unit, three at Kr(2) opposite four-rings in the large cavity, and two at Kr(3) on threefold axes in the large cavity. Relatively strong interactions of Kr atoms at Kr(1) and Kr(3) with Na+ ions of six-rings are observed: Na-Kr(1) = 3.6(1) $\AA$ and Na-Kr(3) = $3.08(5)\AA.$ In each sodalite unit, one Kr atom at Kr(1) was displaced $0.74\AA$ from the center of the sodalite unit toward a Na+ ion, where it can be polarized by the electrostatic field of the zeolite, avoiding the center of the sodalite unit which by symmetry has no electrostatic field. In each large cavity, five Kr atoms were found, forming a trigonal-bipyramid arrangement with three Kr(2) atoms at equatorial positions and two Kr(3) atoms at axial positions. With various reasonable distances and angles, the existence of Kr5 cluster was proposed (Kr(2)-Kr(3) = $4.78(6)\AA$ and Kr(2)-Kr(2) = $5.94(7)\AA$, Kr(2)-Kr(3)-Kr(2) = 76.9(3), Kr(3)-Kr(2)-Kr(3) = 88(1), and Kr(2)-Kr(2)-Kr(2) = $60^{\circ}).$ These arrangements of the encapsulated Kr atoms in the large cavity are stabilized by alternating dipoles induced on Kr(2) by four-ring oxygens and Kr(3) by six-ring Na+ ions, respectively.

Fabrication of wrap-around gate nanostructures from electrochemical deposition (전기화학적 도금을 이용한 wrap-around 게이트 나노구조의 제작)

  • Ahn, Jae-Hyun;Hong, Su-Heon;Kang, Myung-Gil;Hwang, Sung-Woo
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.126-131
    • /
    • 2009
  • To overcome short channel effects, wrap-around field effect transistors have drawn a great deal of attention for their superior electrostatic coupling between the channel and the surrounding gate electrode. In this paper, we introduce a bottom-up technique to fabricate a wrap-around field effect transistor using silicon nanowires as the conduction channel. Device fabrication was consisted mainly of electron-beam lithography, dielectrophoresis to accurately align the nanowires, and the formation of gate electrode using electrochemical deposition. The electrolyte for electrochemical deposition was made up of non-toxic organic-based solution and liquid nitrogen was used as a method of maintaining the shape of polymethyl methacrylate(PMMA) during the process of electrochemical deposition. Patterned PMMA can be used as a nano-template to produce wrap-around gate nano-structures.

  • PDF

The Electroresponse Properties of Alginate Films under the Electric Field (알지네이트 필름의 전기장 하에서의 응답 특성)

  • 김인중;강휘원;정창남
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.195-200
    • /
    • 2003
  • Alginate is a natural ionic polymer including numerous anionic groups and can be actuated by the ionic group under the electric field. The crosslinked alginate films were fabricated with CaCl$_2$. The thermal, mechanical and electroresponse properties of the films were investigated by thermogravimetric analysis, tensile and bending tests. The initial degradation and tensile strength increased according to the degree of crosslinking. Also, the swelling ratio of the films increased with decreasing degree of crosslinking and increasing pH due to free volume and electrostatic repulsion. The films actuated by an electric stimulus exhibited gentle and flexible action like a pendulum. In the electric field, the electric stimuli such as the applied voltage, ionic strength and kind of electrolyte solution had an effect on the electroresponse of the films. Alginate films with 5 wt% crosslinking agent showed the highest bending angle and reversible bending behavior. When the ionic strength of NaCl and KCl electrolyte solution was 0.1 M, the films showed the highest electroresponse. The bending behavior of the films increased with the applied voltage.

Fabrication of carbon nanotube emitters by filtration through a metal mesh

  • Choi, Ju-Sung;Lee, Han-Sung;Gwak, Jeung-Chun;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.150-150
    • /
    • 2010
  • Carbon nanotubes have drawn attention as one of the most promising emitter materials ever known not only due to their nanometer-scale radius of curvature at tip and extremely high aspect ratios but also due to their strong mechanical strength, excellent thermal conductivity, good chemical stability, etc. Some applications of CNTs as emitters, such as X-ray tubes and microwave amplifiers, require high current emission over a small emitter area. The field emission for high current density often damages CNT emitters by Joule heating, field evaporation, or electrostatic interaction. In order to endure the high current density emission, CNT emitters should be optimally fabricated in terms of material properties and morphological aspects: highly crystalline CNT materials, low gas emission during electron emission in vacuum, optimal emitter distribution density, optimal aspect ratio of emitters, uniform emitter height, strong emitter adhesion onto a substrate, etc. We attempted a novel approach to fabricate CNT emitters to meet some of requirements described above, including highly crystalline CNT materials, low gas emission, and strong emitter adhesion. In this study, CNT emitters were fabricated by filtrating an aqueous suspension of highly crystalline thin multiwalled CNTs (Hanwha Nanotech Inc.) through a metal mesh. The metal mesh served as a support and fixture frame of CNT emitters. When 5 ml of the CNT suspension was engaged in filtration through a 400 mesh, the CNT layers were formed to be as thick as the mesh at the mesh openings. The CNT emitter sample of $1{\times}1\;cm^2$ in size was characteristic of the turn-on electrical field of 2.7 V/${\mu}m$ and the current density of 14.5 mA at 5.8 V/${\mu}m$ without noticeable deterioration of emitters. This study seems to provide a novel fabrication route to simply produce small-size CNT emitters for high current emission with reliability.

  • PDF