• Title/Summary/Keyword: electrophysiology

Search Result 223, Processing Time 0.026 seconds

Occupational Neurotoxic Diseases in Taiwan

  • Liu, Chi-Hung;Huang, Chu-Yun;Huang, Chin-Chang
    • Safety and Health at Work
    • /
    • v.3 no.4
    • /
    • pp.257-267
    • /
    • 2012
  • Occupational neurotoxic diseases have become increasingly common in Taiwan due to industrialization. Over the past 40 years, Taiwan has transformed from an agricultural society to an industrial society. The most common neurotoxic diseases also changed from organophosphate poisoning to heavy metal intoxication, and then to organic solvent and semiconductor agent poisoning. The nervous system is particularly vulnerable to toxic agents because of its high metabolic rate. Neurological manifestations may be transient or permanent, and may range from cognitive dysfunction, cerebellar ataxia, Parkinsonism, sensorimotor neuropathy and autonomic dysfunction to neuromuscular junction disorders. This study attempts to provide a review of the major outbreaks of occupational neurotoxins from 1968 to 2012. A total of 16 occupational neurotoxins, including organophosphates, toxic gases, heavy metals, organic solvents, and other toxic chemicals, were reviewed. Peer-reviewed articles related to the electrophysiology, neuroimaging, treatment and long-term follow up of these neurotoxic diseases were also obtained. The heavy metals involved consisted of lead, manganese, organic tin, mercury, arsenic, and thallium. The organic solvents included n-hexane, toluene, mixed solvents and carbon disulfide. Toxic gases such as carbon monoxide, and hydrogen sulfide were also included, along with toxic chemicals including polychlorinated biphenyls, tetramethylammonium hydroxide, organophosphates, and dimethylamine borane. In addition we attempted to correlate these events to the timeline of industrial development in Taiwan. By researching this topic, the hope is that it may help other developing countries to improve industrial hygiene and promote occupational safety and health care during the process of industrialization.

Clinical and Electrophysiological Changes after Open Carpal Tunnel Release: Preliminary Study of 25 Hands (수근관증후군 수술 전후 임상증상과 전기생리학적 검사소견의 변화: 25손을 대상으로 한 예비연구)

  • Yang, Ji Won;Sung, Young Hee;Park, Kee Hyung;Lee, Yeong Bae;Shin, Dong Jin;Park, Hyeon Mi
    • Annals of Clinical Neurophysiology
    • /
    • v.16 no.1
    • /
    • pp.21-26
    • /
    • 2014
  • Background: Electrophysiological study has been known as a useful method to evaluate the therapeutic effect of operation in idiopathic carpal tunnel syndrome (CTS). The purpose of this study was to evaluate the clinical and electrophysiological changes after carpal tunnel release (CTR) compared to the preoperative results. Methods: We analyzed the changes of nerve conduction study (NCS) before and after minimal open carpal tunnel release in 18 patients (25 hands) with CTS. Follow-up study was performed over 6 months after operation. Results: Clinical improvement was seen in all cases after CTR. In contrast, electrophysiological improvement was various depending on the parameters; the mean median sensory latency and nerve conduction velocity (NCV) improved significantly (p = 0.001). The mean median motor latency also improved, but NCV and compound muscle action potential (CMAP) amplitude did not change. The extent of improvement was evident in moderate CTS, but not in severe CTS. Conclusions: In this preliminary study, all subjects who underwent CTR achieved a clinical relief along with a significant improvement of electrophysiological parameters such as median sensory latency, sensory NCV and median distal motor latency. After CTR, a number of cases with mild to moderate CTS showed a prominent improvement of clinical and electrophysiological parameters, while fewer improvements were seen in severe CTS, although it did not reach the statistical significance.

Impaired Taste Associative Memory and Memory Enhancement by Feeding Omija in Parkinson's Disease Fly Model

  • Poudel, Seeta;Lee, Youngseok
    • Molecules and Cells
    • /
    • v.41 no.7
    • /
    • pp.646-652
    • /
    • 2018
  • Neurodegeneration can result in memory loss in the central nervous system (CNS) and impairment of taste and smell in the peripheral nervous system (PNS). The neurodegeneration seen in Parkinson's disease (PD) is characterized by functional loss of dopaminergic neurons. Recent studies have also found a role for dopaminergic neurons in regulating taste memory rewards in insects. To investigate how taste memories and sugar sensitivity can be affected in PD, we utilized the $DJ-1{\beta}$ mutant fruit fly, $DJ-1{\beta}^{ex54}$, as a PD model. We performed binary choice feeding assays, electrophysiology and taste-mediated memory tests to explore the function of the $DJ-1{\beta}$ gene in terms of sugar sensitivity as well as associative taste memory. We found that PD flies exhibited an impaired ability to discriminate sucrose across a range of sugar concentrations, with normal responses at only very high concentrations of sugar. They also showed an impairment in associative taste memory. We highlight that the taste impairment and memory defect in $DJ-1{\beta}^{ex54}$ can be recovered by the expression of wild-type $DJ-1{\beta}$ gene in the dopaminergic neurons. We also emphasized the role of dopaminergic neurons in restoring taste memory function. This impaired memory property of $DJ-1{\beta}^{ex54}$ flies also allows them to be used as a model system for finding supplementary dietary foods that can improve memory function. Here we provide evidence that the associative taste memory of both control and $DJ-1{\beta}^{ex54}$ flies can be enhanced with dietary supplementation of the medicinal plant, omija.

Clinical Features of Wrist Drop Caused by Compressive Radial Neuropathy and Its Anatomical Considerations

  • Han, Bo Ram;Cho, Yong Jun;Yang, Jin Seo;Kang, Suk Hyung;Choi, Hyuk Jai
    • Journal of Korean Neurosurgical Society
    • /
    • v.55 no.3
    • /
    • pp.148-151
    • /
    • 2014
  • Objective : Posture-induced radial neuropathy, known as Saturday night palsy, occurs because of compression of the radial nerve. The clinical symptoms of radial neuropathy are similar to stroke or a herniated cervical disk, which makes it difficult to diagnose and sometimes leads to inappropriate evaluations. The purpose of our study was to establish the clinical characteristics and diagnostic assessment of compressive radial neuropathy. Methods : Retrospectively, we reviewed neurophysiologic studies on 25 patients diagnosed with radial nerve palsy, who experienced wrist drop after maintaining a certain posture for an extended period. The neurologic presentations, clinical prognosis, and electrophysiology of the patients were obtained from medical records. Results : Subjects were 19 males and 6 females. The median age at diagnosis was 46 years. The right arm was affected in 13 patients and the left arm in 12 patients. The condition was induced by sleeping with the arms hanging over the armrest of a chair because of drunkenness, sleeping while bending the arm under the pillow, during drinking, and unknown. The most common clinical presentation was a wrist drop and paresthesia on the dorsum of the 1st to 3rd fingers. Improvement began after a mean of 2.4 weeks. Electrophysiologic evaluation was performed after 2 weeks that revealed delayed nerve conduction velocity in all patients. Conclusion : Wrist drop is an entrapment syndrome that has a good prognosis within several weeks. Awareness of its clinical characteristics and diagnostic assessment methods may help clinicians make diagnosis of radial neuropathy and exclude irrelevant evaluations.

Correction of Asymmetric Crying Facies with Botulinum Toxin A Injection: A Case Report (비대칭 우는 얼굴에서 보툴리눔 독소 A를 이용한 치험례)

  • Park, Seong Oh;Kim, Min Ho;Song, Jung Yoon;Park, Ji Ung;Yun, Byung Min;Choi, Tae Hyun;Kim, Sukwha
    • Archives of Craniofacial Surgery
    • /
    • v.12 no.2
    • /
    • pp.125-128
    • /
    • 2011
  • Purpose: Asymmetric crying facies is caused by agenesis or hypoplasia of the depressor anguli oris muscle and is often associated various anomalies. Several static and dynamic surgical interventions have been reported, but their effects are unreliable. We report on the successful use of botulinum toxin A in an asymmetric crying facies patient. Methods: A 4-year-old girl presented with a facial asymmetry on crying or smiling. Physical examination revealed that her face had no asymmetry at rest. However, the patient showed characteristic asymmetry when smiling, crying, and with other normal facial movements. Asymmetric crying facies was clinically suspected and the weakness of left depressor anguli oris was present on electrophysiology study. Fifteen units of botulinum toxin type A were injected to the right depressor anguli oris muscle. Results: The patient showed the prominent improvement in the facial symmetry without significant complication and the effect persisted until 3 months post injection. Conclusion: Asymmetric crying facies was treated successfully with botulinum toxin A and this method was easy and noninvasive.

Influences of ethanol and temperature on sucrose-evoked response of gustatory neurons in the hamster solitary nucleus

  • Li, Cheng-Shu;Chung, Ki-Myung;Kim, Kyung-Nyun;Cho, Young-Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.6
    • /
    • pp.603-611
    • /
    • 2021
  • Taste-responsive neurons in the nucleus of the solitary tract (NST), the first gustatory nucleus, often respond to thermal or mechanical stimulation. Alcohol, not a typical taste modality, is a rewarding stimulus. In this study, we aimed to investigate the effects of ethanol (EtOH) and/or temperature as stimuli to the tongue on the activity of taste-responsive neurons in hamster NST. In the first set of experiments, we recorded the activity of 113 gustatory NST neurons in urethane-anesthetized hamsters and evaluated responses to four basic taste stimuli, 25% EtOH, and 40℃ and 4℃ distilled water (dH2O). Sixty cells responded to 25% EtOH, with most of them also being sucrose sensitive. The response to 25% EtOH was significantly correlated with the sucrose-evoked response. A significant correlation was also observed between sucrose- and 40℃ dH2O- and between 25% EtOH- and 40℃ dH2O-evoked firings. In a subset of the cells, we evaluated neuronal activities in response to a series of EtOH concentrations, alone and in combination with 32 mM sucrose (EtOH/Suc) at room temperature (RT, 22℃-23℃), 40℃, and 4℃. Neuronal responses to EtOH at RT and 40℃ increased as the concentrations increased. The firing rates to EtOH/Suc were greater than those to EtOH or sucrose alone. The responses were enhanced when solutions were applied at 40℃ but diminished at 4℃. In summary, EtOH activates most sucrose-responsive NST gustatory cells, and the concomitant presence of sucrose or warm temperatures enhance this response. Our findings may contribute to elucidate the neural mechanisms underlying appetitive alcohol consumption.

ERRATUM : 2018 Korean Heart Rhythm Society Guidelines for Detection and Management of Risk Factors and Concomitant Cardiovascular Diseases in Korean Patients with Atrial Fibrillation (ERRATUM : 2018 대한부정맥학회 심방세동 위험인자와 동반된 심혈관계 질환의 발견과 관리)

  • Lee, So-Ryoung;Lee, Young Soo;Lim, Woo-Hyun;Kim, Tae-Hoon;Cha, Myung-Jin;Lee, Ji-Hyun;Baek, Yong-Soo;Lim, Hong Euy;Joung, Boyoung;Kim, June Soo;Lee, Man-Young
    • The Korean Journal of Medicine
    • /
    • v.93 no.6
    • /
    • pp.582-582
    • /
    • 2018

Cortical Deafness Due to Ischaemic Strokes in Both Temporal Lobes

  • Lachowska, Magdalena;Pastuszka, Agnieszka;Sokolowski, Jacek;Szczudlik, Piotr;Niemczyk, Kazimierz
    • Journal of Audiology & Otology
    • /
    • v.25 no.3
    • /
    • pp.163-170
    • /
    • 2021
  • Cortical deafness is a clinical rarity whereby a patient is unresponsive to all types of sounds despite the preserved integrity of the peripheral hearing organs. In this study, we present a patient who suddenly lost his hearing following ischaemic infarcts in both temporal lobes with no other neurological deficits. The CT confirmed damage to the primary auditory cortex (Heschl's gyrus) of both hemispheres. Initially, the patient was unresponsive to all sounds, however, he regained some of the auditory abilities during 10 months follow up. Pure tone threshold improvement from complete deafness to the level of moderate hearing loss in the right ear and severe in the left was observed in pure tone audiometry. Otoacoustic emissions, auditory brainstem responses, and acoustic reflex findings showed normal results. The middle and late latency potential results confirmed objectively the improvement of the patient's hearing, however, after 10 months still, they were somewhat compromised on both sides. In speech audiometry, there was no comprehension of spoken words neither at 3 nor at 10 months. The absent mismatch negativity confirmed above mentioned comprehension deficit. The extensive auditory electrophysiological testing presented in this study contributes to the understanding of the neural and functional changes in cortical deafness. It presents the evolution of changes after ischaemic cerebrovascular event expressed as auditory evoked potentials starting from short through middle and long latency and ending with event-related potentials and supported by neuroimaging.

Surgical and Electrical Anatomy of the Inter-Nodal and Intra-Atrial Conduction System in the Heart

  • Seo, Jeong-Wook;Kim, Jung-Sun;Cha, Myung-Jin;Yoon, Ja Kyoung;Kim, Min-Ju;Tsao, Hsuan-Ming;Lee, Chang-Ha;Oh, Seil
    • Journal of Chest Surgery
    • /
    • v.55 no.5
    • /
    • pp.364-377
    • /
    • 2022
  • An anatomical understanding of the atrial myocardium is crucial for surgeons and interventionists who treat atrial arrhythmias. We reviewed the anatomy of the inter-nodal and intra-atrial conduction systems. The anterior inter-nodal route (#1) arises from the sinus node and runs through the ventral wall of the atrial chambers. The major branch of route #1 approaches the atrioventricular node from the anterior aspect. Other branches of route #1 are Bachmann's bundle and a vestibular branch around the tricuspid valve. The middle inter-nodal route (#2) begins with a broad span of fibers at the sinus venarum and extends to the superior limbus of the oval fossa. The major branch of route #2 joins with the branch of route #1 at the anterior part of the atrioventricular node. The posterior inter-nodal route (#3) is at the terminal crest and gives rise to many branches at the pectinate muscles of the right atrium and then approaches the posterior atrioventricular node after joining with the vestibular branch of route #1. The branches of the left part of Bachmann's bundle and the branches of the second inter-nodal route form a thin myocardial network at the posterior wall of the left atrium. These anatomical structures could be categorized into major routes and side branches. There are 9 or more anatomical circles in the atrial chambers that could be structural sites for macro re-entry. The implications of normal and abnormal structures of the myocardium for the pathogenesis and treatment of atrial arrhythmias are discussed.

Cortical Deafness Due to Ischaemic Strokes in Both Temporal Lobes

  • Lachowska, Magdalena;Pastuszka, Agnieszka;Sokolowski, Jacek;Szczudlik, Piotr;Niemczyk, Kazimierz
    • Korean Journal of Audiology
    • /
    • v.25 no.3
    • /
    • pp.163-170
    • /
    • 2021
  • Cortical deafness is a clinical rarity whereby a patient is unresponsive to all types of sounds despite the preserved integrity of the peripheral hearing organs. In this study, we present a patient who suddenly lost his hearing following ischaemic infarcts in both temporal lobes with no other neurological deficits. The CT confirmed damage to the primary auditory cortex (Heschl's gyrus) of both hemispheres. Initially, the patient was unresponsive to all sounds, however, he regained some of the auditory abilities during 10 months follow up. Pure tone threshold improvement from complete deafness to the level of moderate hearing loss in the right ear and severe in the left was observed in pure tone audiometry. Otoacoustic emissions, auditory brainstem responses, and acoustic reflex findings showed normal results. The middle and late latency potential results confirmed objectively the improvement of the patient's hearing, however, after 10 months still, they were somewhat compromised on both sides. In speech audiometry, there was no comprehension of spoken words neither at 3 nor at 10 months. The absent mismatch negativity confirmed above mentioned comprehension deficit. The extensive auditory electrophysiological testing presented in this study contributes to the understanding of the neural and functional changes in cortical deafness. It presents the evolution of changes after ischaemic cerebrovascular event expressed as auditory evoked potentials starting from short through middle and long latency and ending with event-related potentials and supported by neuroimaging.