• Title/Summary/Keyword: electronic structures

Search Result 1,798, Processing Time 0.033 seconds

A study on the nonvolatile memory characteristics of MNOS structures with double nitride layer (2층 질하막 MNOS구조의 비휘발성 기억특성에 관한 연구)

  • 이형욱
    • Electrical & Electronic Materials
    • /
    • v.9 no.8
    • /
    • pp.789-798
    • /
    • 1996
  • The double nitride layer Metal Nitride Oxide Semiconductor(MNOS) structures were fabricated by variating both gas ratio and nitride thickness, and by duplicating nitride deposited and one nitride layer MNOS structure to improve nonvolatile memory characteristics of MNOS structures by Low Pressure Chemical Vapor Deposition(LPCVD) method. The nonvolatile memory characteristics of write-in, erase, memory retention and degradation of Bias Temperature Stress(BTS) were investigated by the homemade automatic .DELTA. $V_{FB}$ measuring system. In the trap density double nitride layer structures were higher by 0.85*10$^{16}$ $m^{-2}$ than one nitride layer structure, and the AVFB with oxide field was linearly increased. However, one nitride layer structure was linearly increased and saturated above 9.07*10$^{8}$ V/m in oxide field. In the erase behavior, the hole injection from silicon instead of the trapped electron emission was observed, and also it was highly dependent upon the pulse amplitude and the pulse width. In the memory retentivity, double nitrite layer structures were superior to one nitride layer structure, and the decay rate of the trapped electron with increasing temperature was low. At increasing the number on BTS, the variance of AVFB of the double nitride layer structures was smaller than that of one nitride layer structure, and the trapped electron retention rate was high. In this paper, the double nitride layer structures were turned out to be useful in improving the nonvolatile memory characteristics.

  • PDF

Fourier Modal Method for Optical Dipole Radiation in Photonic Structures

  • Park, Sungjae;Hahn, Joonku;Kim, Hwi
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.597-605
    • /
    • 2021
  • An extended Fourier modal method (FMM) for optical dipole radiation in three-dimensional photonic structures is proposed. The core elements of the proposed FMM are the stable bidirectional scattering-matrix algorithm for modeling internal optical emission, and a novel optical-dipole-source model that prevents numerical errors induced by the Gibbs phenomenon. Through the proposed scheme, the FMM is extended to model a wide range of source-embedded photonic structures.

The Design of a Multiplexer for Multiview Image Processing

  • Kim, Do-Kyun;Lee, Yong-Joo;Koo, Gun-Seo;Lee, Yong-Surk
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.682-685
    • /
    • 2002
  • In this paper, we defined necessary operations and functional blocks of a multiplexer for 3-D video systems and present our multiplexer design. We adopted the ITU-T's recommendation(H.222.0) to define the operations and functions of the multiplexer and explained the data structures and details of the design for multiview image processing. The data structure of TS(Transport Stream) and PES (Packetized Elementary Stream) in ITU-T Recommendation H.222.0 does not fit our multiview image processing system, because this recommendation is fur wide scope of transmission of non-telephone signals. Therefore, we modified these TS and PES stream structures. The TS is modified to DSS(3D System Stream) and PES is modified to SPDU(DSS Program Data Unit). We constructed the multiplexer through these modified DSS and SPDU. The number of multiview image channels is nine, and the image class employed is MPEG-2 SD(Standard Definition) level which requires a bandwidth of 2∼6 Mbps. The required clock speed should be faster than 54(= 6 ${\times}$ 9)㎒ which is the outer interface clock speed. The inside part of the multiplexer requires a clock speed of only 1/8 of 54㎒, since the inside part of the multiplexer operates by the unit of byte. we used ALTERA Quartus II and the FPGA verification for the simulation.

  • PDF

Electrical Characteristics of Carbon Nanotube Embedded 4H-SiC MOS Capacitors (탄소나노튜브를 첨가한 4H-SiC MOS 캐패시터의 전기적 특성)

  • Lee, Taeseop;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.547-550
    • /
    • 2014
  • In this study, the electrical characteristics of the nickel (Ni)/carbon nanotube (CNT)/$SiO_2$ structures were investigated in order to analyze the mechanism of CNT in MOS device structures. We fabricated 4H-SiC MOS capacitors with or without CNTs. CNT was dispersed by isopropyl alcohol. The capacitance-voltage (C-V) and current-voltage (I-V) are characterized. Both devices were measured by Keithley 4200 SCS. The experimental flatband voltage ($V_{FB}$) shift was positive. Near-interface trap charge density ($N_{it}$) and negative oxide trap charge density ($N_{ox}$) value of CNT embedded MOS capacitors was less than that values of reference samples. Also, the leakage current of CNT embedded MOS capacitors is higher than reference samples. It has been found that its oxide quality is related to charge carriers and/or defect states in the interface of MOS capacitors.

Characterization of Surface Textured Silicon Substrates by SF6/O2 Gas Mixture (SF6/O2 혼합가스에 의한 실리콘 웨이퍼의 표면 텍스쳐링 특성)

  • Kang, Min-Seok;Joo, Sung-Jae;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.345-348
    • /
    • 2012
  • The optical losses associated with the reflectance of incident radiation are among the most important factors limiting the efficiency of a solar cell. Therefore, photovoltaic cells normally require special surface structures or materials, which can reduce reflectance. In this study, nano-scale textured structures with anti-reflection properties were successfully formed on silicon. The surface of sicon wafer was etched by the inductively coupled plasma process using the gaseous mixture of $SF_6+O_2$. We demonstrate that the reflection characteristic has significantly reduced by ~0% compared with the flat surface. As a result, the power efficiency $P_{max}$ of the nano-scale textured silicon solar cell were enhanced up to 20%, which can be ascribed primarily to the improved light trapping in the proposed nano-scale texturing.

A study on the prediction of the mechanical properties of Zinc alloys using DV-Xα Molecular Orbital Method (DV-Xα분자궤도법을 이용한 Zn alloy의 기계적 성질 예측)

  • Na, H.S.;Kong, J.P.;Kim, Y.S.;Kang, C.Y.
    • Korean Journal of Materials Research
    • /
    • v.17 no.5
    • /
    • pp.250-255
    • /
    • 2007
  • The alloying effects on the electronic structures of Zinc are investigated using the relativistic $DV-X{\alpha}molecular$ orbital method in order to obtain useful information for alloy design. A new parameter which is the d obital energy level(Md) and the bonder order(Bo) of alloying elements in Zinc was introduced and used for prediction of the mechanical properties. The Md correlated with the atomic radius and the electronegativity of elements. The Bo is a measure of the strength of the covalent bond between M and X atoms. First-principles calculations of electronic structures were performed with a series of models composed of a MZn18 cluster and the electronic states were calculated by the discrete variational- $X{\alpha}method$ by using the program code SCAT. The central Zinc atom(M) in the cluster was replaced by various alloying elements. In this study energy level structures of pure Zinc and alloyed Zinc were calculated. From calculated results of energy level structures in MZn18 cluster, We found Md and Bo values for various elements of Zn. In this work, Md and Bo values correlated to the tensile strength for the Zn. These results will give some guide to design of zinc based alloys for high temperature applications and it is possible the excellent alloys design.

Comparison of Retaining Wall Displacement Prediction Performance Using Sensor Data (센서 데이터를 활용한 옹벽 변위 예측 성능 비교)

  • Sheilla Wesonga;Jang-Sik Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.5
    • /
    • pp.1035-1040
    • /
    • 2024
  • The main objective of inspecting structures is to ensure the safety of all entities that utilize these structures as cracks in structures if not attended to could lead to serious calamities. With that objective in mind, artificial intelligence (AI) based technologies to assist human inspectors are needed especially for retaining walls in structures. In this paper, we predict the crack displacement of retaining walls using an Polynomial Regressive (PR) analysis model, as well as Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) deep learning models, and compare their performance. For the performance comparison, we apply multi-variable feature inputs, by utilizing temperature and rainfall data that may affect the crack displacement of the retaining wall. The training and inference data were collected through measuring sensors such as inclinometers, thermometers, and rain gauges. The results show that the multi-variable feature model had a MAE of 0.00186, 0.00450 and 0.00842, which outperformed the single variable feature model at 0.00393, 0.00556 and 0.00929 for the polynomial regression model, LSTM model and the GRU model respectively from the evaluation performed.

Electronic Structures of ANb2PS10 (A=Ag, Na) and AuNb4P2S20

  • Jung, Dong-Woon;Kim, Sung-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.739-743
    • /
    • 2003
  • New quaternary compounds $ANb_2PS_{10}$ (A = Na, Ag) and $AuNb_4P_2S_{20}$ were synthesized and characterized. The structures of three compounds consist of one-dimensional infinite chains built by [$Nb_2S_{12}$] and [$PS_4$] units. Cation atoms are occupied within the van der Waals gap of sulfur atoms between infinite chains to make -S…$M^+$…S- contacts. There is only one Au atom site and so crystallographically a unit cell contains four equivalent Au atoms in $AuNb_4P_2S_{20}$. This is only the half of the numbers of Na or Ag atoms in $NaNb_2PS_{10}$ or $AgNb_2PS_{10}$. The ratio between $Nb_2PS_{10}$ matrix vs the cation is, therefore, 1 : 1 for Ag and Na, but it is 2 : 1 for Au. Mixed valency in Au or Nb was expected to balance the charge in the latter compound. The electronic structures calculated based on the extended Huckel tight-binding method show that $ANb_2PS_{10}$ (A = Ag, Na) are semiconducting, while $AuNb_4P_2S_{20}$ is metallic, which is not consistent with the experimental results of these three compounds that all exhibit semiconducting property. The result of calculation suggests that $AuNb_4P_2S_{20}$ might be a magnetic insulator. Magnetic measurement experiment exactly proved that the compound is a Slater antiferromagnetic material with the Neels' temperature of 45 K. It is recognized, therefore, that electronic structure analysis is very useful to understand the properties of compounds.

Influence of para-orientating Methoxyl Units on the Electronic Structures and Light Absorption Properties of the Triphenylamine-based dyes by DFT Study

  • Liang, Guijie;Xu, Jie;Xu, Weilin;Wang, Luoxin;Shen, Xiaolin;Yao, Mu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2279-2285
    • /
    • 2011
  • The geometries, electronic structures and absorption spectra of the two organic triphenylamine-based dyes TA-St-CA and TA-DM-CA, containing identical electron donors and acceptors but the different conjugated bridges, were studied by density functional theory (DFT) at the B3LYP and PBE1PBE levels, respectively. The influence of para-orientating methoxyl units on the electronic structures and light absorption properties of the dyes and the consequent photovoltaic performance of the dye-sensitized solar cells (DSSCs) were investigated in detail. The results indicate that the introduction of the para-orientating methoxyl units into the conjugated bridge induces the increased absorption wavelength as well as the more negative EHOMO corresponding to the bigger driving force $(E_{I^-/I^-_3}-E_{HOMO})$ for dye reduction, which together improve the photovoltaic performance of TA-DM-CA, although there is a decline of the open circuit voltage caused by the more negative $E_{LUMO}$.

Theoretical Studies of the Structures and Electronic Properties of CumSiOm+1 Clusters (m = 0 - 7) (CumSiOm+1 클러스터(m = 0 - 7)의 분자구조 그리고 전기적 특성에 관한 이론 연구)

  • Na, Ho-Hyun;Nam, Seong-Hyun;Lee, Gi-Yun;Jang, Ye-Seul;Yoon, Duck-Young;Bae, Gyun-Tack
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.4
    • /
    • pp.239-244
    • /
    • 2016
  • We investigated the structures and electronic properties of CumSiOm+1 clusters with m = 0 - 7. For these clusters, we replaced a Cu atom in the copper oxide clusters with a Si atom. The B3LYP functional and LANL2DZ basis set were used for optimization of the molecular structures of all neutral and charged clusters. The bond distances, bond angles, and Mulliken charges were calculated to study the structural properties. In addition, in order to understand the electronic properties, we examined the ionization energies, electronic affinities, and second differences in energies.