• Title/Summary/Keyword: electronic state

Search Result 3,092, Processing Time 0.03 seconds

Fabrication of High Tc Superconductor Using Thermal Pyrolysis (열분해법에 의한 고온 초전도 합성)

  • Lee, Sang-Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.85-86
    • /
    • 2006
  • A high Tc superconducting with a nominal composition of $Bi_2Sr_2Ca_2Cu_3O_y$ was prepared by the citarte method. The solid precursor produced by the dehydration of the gel at $120^{\circ}C$ for 12h is not in the amorphous state as expected but in a crystalline state. X-ray diffraction peaks of nearly the same angular position as the peaks of high Tc phase were observed in the precursor. After pyrolysis at $400^{\circ}C$ and calcination at $840^{\circ}C$ for 4h, the (001)peak of the high Tc phase was cleary observed. Experimental results suggest that the intermediate phase formed before the formation of the superconducting phase may be the most important factro in determining whether it is easy to form the high Tc phase or not, because the nucleation barriers of the two superconducting phase may be altered by the variation of the crystal structures of those intermediate phase.

  • PDF

First-principles studies of the structural and electronic properties of rigid carbon nanofoam

  • Park, So-Ra;Kittimanapun, Kritsada;Ahn, Jeung-Sun;Tomanek, David;Kwon, Young-Kyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.76-76
    • /
    • 2010
  • Using ab initio density functional calculations, we investigate the structural and electronic properties of porous schwarzite structures formed by $sp^2$ carbon minimal surfaces with negative Gaussian curvature. We calculate the equilibrium geometries, elastic properties and electronic structure of two systems with cubic unit cells containing 152 and 200 carbon atoms, which are metallic and very rigid. The porous schwarzite structure can be efficiently doped by electron donors as well as accepors, making it a promising candidate for the next generation of alkali ion batteries. Furthermore, the schwarzite structures can be magnetic when doped and thus act as arrays of interconnected quantum spin dots. We also propose that two interpenetrating schwarzite structures be used as a ultimate super-capacitor.

  • PDF

Electric Load Signature Analysis for Home Energy Monitoring System

  • Lu-Lulu, Lu-Lulu;Park, Sung-Wook;Wang, Bo-Hyeun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.193-197
    • /
    • 2012
  • This paper focuses on identifying which appliance is currently operating by analyzing electrical load signature for home energy monitoring system. The identification framework is comprised of three steps. Firstly, specific appliance features, or signatures, were chosen, which are DC (Duty Cycle), SO (Slope of On-state), VO (Variance of On-state), and ZC (Zero Crossing) by reviewing observations of appliances from 13 houses for 3 days. Five appliances of electrical rice cooker, kimchi-refrigerator, PC, refrigerator, and TV were chosen for the identification with high penetration rate and total operation-time in Korea. Secondly, K-NN and Naive Bayesian classifiers, which are commonly used in many applications, are employed to estimate from which appliance the signatures are obtained. Lastly, one of candidates is selected as final identification result by majority voting. The proposed identification frame showed identification success rate of 94.23%.

Rapid Energy Transfer Mechanism of F Electronic Excitation to the Vibration of Randomly Distributed $OH^- in KCI

  • 장두전;아철승
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1063-1068
    • /
    • 1998
  • The nature of F electronic excitation energy transfer to OH- vibrational levels in KCl crystals is the exchange interaction, although the transfer process exhibits three temporally distinguishable components depending on the distance between excited F center and OH-. The critical distance as well as rate of the major energy transfer process in randomly distributed samples increases rapidly as OH- librational motions become active with temperature rise. The excited state character introduced into the OH- ground electronic state by perturbation is essential for the exchange interaction. The perturbation is brought about by the expanded electron cloud of excited F center for OH- associated to F center, whereas by librations and lattice vibrations perpendicular to the bond axis for isolated OH- . F excitation quenching efficiency by OH- is dependent on the variation of the critical distance rather than the rate as the rate is much faster than the normal F bleach recovery rate.

Electronic and Magnetic Structures of Ba2MReO6 (M=Mn, Fe, Co, and Ni)

  • Park, J.H.;Kwon, S.K.;Min, B.I.
    • Journal of Magnetics
    • /
    • v.12 no.2
    • /
    • pp.64-67
    • /
    • 2007
  • Electronic structures of ordered double perovskites $Ba_2MReO_6$ (M=Mn, Fe, Co, and Ni) are investigated by using the linearized muffin-tin orbitals band method in the local spin-density approximation (LSDA) and the LSDA+U method. The half-metallic ferrimagnetic ground states are obtained for M=Fe and Ni in the LSDA+U, whereas the insulating ground state is obtained for M=Mn in the LSDA+U incorporating the spinorbit interaction. For M= Co, the antiferromagnetic ground state is stabilized in the LSDA+U by invoking the structural distortion.

Lateral Stability Control for Rear Wheel Drive Vehicles Using Electronic Limited Slip Differential (전자식 차동 제한장치를 이용한 후륜구동 차량의 횡방향 안정성 제어)

  • Cha, Hyunsoo;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.6-12
    • /
    • 2021
  • This paper presents a lateral stability control for rear wheel drive (RWD) vehicles using electronic limited slip differentials (eLSD). The proposed eLSD controller is designed to increase the understeer characteristic by transferring torque from the outside to inside wheel. The proposed algorithm is devised to improve the lateral responses at the steady state and transient cornering. In the steady state response, the proposed algorithm can extend the region of linear cornering response and can increase the maximum limit of available lateral acceleration. In the transient response, the proposed controller can reduce the yaw rate overshoot by increasing the understeer characteristic. The proposed algorithm has been investigated via computer simulations. In the simulation results, the performance of the proposed controller is compared with uncontrolled cases. The simulation results show that the proposed algorithm can improve the vehicle lateral stability and handling performance.

Classification of Operating State of Screw Decanter using Video-Based Optical Flow and LSTM Classifier

  • Lee, Sang-Hyeop;Wesonga, Sheilla;Park, Jang-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_1
    • /
    • pp.169-176
    • /
    • 2022
  • Prognostics and health management (PHM) is recently converging throughout the industry, one of the trending issue is to detect abnormal conditions at decanter centrifuge during water treatment facilities. Wastewater treatment operation produces corrosive gas which results failures on attached sensors. This scenario causes frequent sensor replacement and requires highly qualified manager's visual inspection while replacing important parts such as bearings and screws. In this paper, we propose anomaly detection by measuring the vibration of the decanter centrifuge based on the video camera images. Measuring the vibration of the screw decanter by applying the optical flow technique, the amount of movement change of the corresponding pixel is measured and fed into the LST M model. As a result, it is possible to detect the normal/warning/dangerous state based on LSTM classification. In the future work, we aim to gather more abnormal data in order to increase the further accuracy so that it can be utilized in the field of industry.

Voltage and Transient State Analysis of Distribution Line connected to Wind Power Generation (풍력발전이 연계된 배전선로 전압 및 과도상태 해석)

  • Kim, Se-Ho;Na, Kyoung-Yoon;Kim, Gun-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.61-67
    • /
    • 2006
  • The use of the wind energy resource is a rapidly growing area world-wide. The number of installed units is continuously increasing, and therefore, it is important to respect and to deal with the impact of wind power generation system. From the view of an electric grid utility, there is a major problem with the impact of the wind system on the voltage of the electric grid, to which a turbine is connected. In this paper, it is investigated the voltage impact and transient state analysis on distribution line, with which wind power generation system is connected. Connections of wind power system usually occur to voltage drop due to reactive power absorption and sometime result in higher than nominal voltage.

Observer design with Gershgorin's disc

  • Si, Chen;Zhai, Yujia
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.4
    • /
    • pp.41-48
    • /
    • 2013
  • Observer design for system with unknown input was carried out. First, Kalman filter was considered to estimate system state with White noise. With the results of Kalman filter design, state observer, controller properties, including controllability and observability, and the Kalman filter structure and algorithm were also studied. Kalman filter algorithm was applied to Position and velocity measurement based on Kalman filter with white noise, and it was constructed and achieved by programming based on Matlab programming. Finally, observer for system with unknown input was constructed with the help of Gershgorin's disc theorem. With the designed observer, system states was constructed and applied to system with unknown input. By simulation results, estimation performance was verified. In this project, state feedback control theory, observer theory and relevant design procedure, as well as Kalman filter design were understood and used in practical application.

A Balanced Model Reduction for Fuzzy Systems with Time Varying Delay

  • Yoo, Seog-Hwan;Park, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • This paper deals with a balanced model reduction for T-S(Takagi-Sugeno) fuzzy systems with time varying state delay. We define a generalized controllability gramian and a generalized observability gramian for a stable T-S fuzzy delayed systems. We obtain a balanced state space realization using the generalized controllability and observability gramian and obtain a reduced model by truncating states from the balanced state space realization. We also present an upper bound of the approximation error. The generalized controllability gramian and observability gramian can be computed from solutions of linear matrix inequalities. We demonstrate the efficacy of the suggested method by illustrating a numerical example.