• Title/Summary/Keyword: electronic control unit(ECU)

Search Result 118, Processing Time 0.025 seconds

Contact Stress Analysis of Stick Type Ignition Coil Jacket PET (Stick Type Ignition Coil Jacket PET의 접촉응력 해석)

  • Kim Yang-Sul
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.1-6
    • /
    • 2005
  • Stick type ignition coil is new development that connect directly with ECU(Electronic control unit), without needing a spark plug cable and distributor. Glass-fiber reinforced ploymeric composites provide the desirable properties of high stiffness and strength as well as low specific weight. Stick type ignition coil jacket is using PBT CF30 resin. PBT CF30 resin is a kind of electric insulation which is a superior engineering plastic that is used to prevent the leakage of the electrical current. If PET receive a mistake of design or excessive force when HV terminal oppress on jacket, it can happen to crack. Local stress concentrations occurring on the contact surface, the contact phenomenon becomes a direct cause to the wear and failure of mechanical structures. When it is cracked, it can allow a leakage of the electrical current. So, in this study, we analyze the contact stress to PBT jacket using ANSYS program, when HV terminal oppress on jacket. We suppose PBT to be Jacket and we analyzed contact stress that happens in PET like PBT analysis method. We compared the use of PBT and PET.

Development and Optimization of the Hybrid Engine System Model to Improve the Fuel Economy (연비향상을 위한 하이브리드 엔진 시스템 모델 개발과 최적화에 관한 연구)

  • Lee, Dong-Eun;Hwang, In-Goo;Jeon, Dae-Il;Park, Sim-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.65-73
    • /
    • 2008
  • The purpose of this study is development of universal engine model for integrated Hybrid Electric Vehicle (HEV) simulator and a optimization of engine model. The engine model of this study is based on the MATLAB Simulink for universal and include engine fuel economy technologies for HEV. Various engine fuel economy technologies for HEV is estimated by commercial engine 1-D simulation program - WAVE. And, the 1-D simulation model of base version is compared with engine experiment result. The analyzed engine technologies with 1-D simulation are Dual-CVVT, Atkinson-Cycle and Cylinder-Deactivation System. There are improvement of fuel economy and power performance with Dual-CVVT model at part load and full load, pumping loss reduction with Cylinder-Deactivation System at idle and regeneration. Each estimated technologies are analyzed by 1-D simulation on all operation region for base data to converse simulink. The simulink based engine model maintains a signal with ECU for determination of engine operation point.

The impact of security and privacy risk on smart car safety and trust (보안과 프라이버시 위험이 스마트카 안전과 신뢰에 미치는 영향)

  • Soonbeom Kwon;Hwansoo Lee
    • Convergence Security Journal
    • /
    • v.23 no.5
    • /
    • pp.9-19
    • /
    • 2023
  • Smart cars, which incorporate information and communication technologies (ICT) to improve driving safety and convenience for drivers, have recently emerged. However, the increasing risk of automotive cybersecurity due to the vulnerability of electronic control units (ECUs) and automotive networks, which are essential for realizing the autonomous driving functions of smart cars, is a major obstacle to the widespread adoption of smart cars. Although there have been only a few real-world cases of smart car hacking, drivers' concerns about the security of smart cars can have a negative impact on their proliferation. Therefore, it is important to understand the risk factors perceived by drivers and the trust in smart cars formed through them in order to promote the future diffusion of smart cars. This study examines the risk factors that affect the formation of trust in smart cars, focusing on security and privacy, and analyzes how these factors affect safety perceptions and trust in smart cars.

A Study on Energy Efficiency Improvement of LDC Recycling Load Tester (LDC 재생형 부하 시험기의 효율 개선에 관한 연구)

  • Lee, Choon-il;Hong, Yeon-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.86-92
    • /
    • 2016
  • A high-capacity battery installed in a hybrid vehicle or electric vehicle is used to power, or as a power supply for, electric sub-assemblies. In order to use a high-capacity battery as a power supply for electric sub-assemblies, such as an electronic control unit or for lighting, radio, and navigation, there is a need for a DC converter that changes a high voltage of 240-400V to a low voltage of 12-14V, which is done with a low-voltage DC-DC converter (LDC). An LDC undergoes long-term aging so as to reduce latent defects in the production process. With regard to the usual aging method, an LDC is a DC-DC converter. So, a DC power supply is connected and used as input, and a programmable DC electronic load is the output. For stable operation, a product having a larger capacity by 10% (compared to an LDC) is used, and has a structure where electric power is dissipated into 100% heat. So, there is a problem with volume, based on the use of two pieces of equipment to test the LDC, and another problem based on the generation of heat in the programmable DC electronic load. Hence, this paper suggests a load test method as a way of recycling, where a significant portion of the electricity dissipated as heat in a load tester is returned as input. The method realizes savings of 80% or more in the electricity dissipated as heat through improvement in the efficiency of the recycling load tester.

Performance of IEEE 802.11b WLAN Standard at In-Vehicle Environment for Intelligent U-Car System (지능형 U-Car에서 IEEE 802.11b을 이용한 차량 내 데이터 무선 랜 전송 성능 분석)

  • Lee Seung-Hwan;Heo Soo-Jung;Park Yong-Wan;Lee Sang-Shin;Lee Dong-Hahk;Yu Jae-Hwang
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.9 s.351
    • /
    • pp.80-87
    • /
    • 2006
  • In this paper, we analyze the performance of IEEE 802.11b WLAN communication between access point(AP) and mobile equipment(ME) in 2.4 GHz band with noise and interference factors. WLAN communication at in-vehicle environment is assumed as the communication between main vehicle controller and electronic device such as sensor, ECU (Electrical Control Unit) in vehicle on telematics field for implementing wireless vehicle control system. Received interference level from other system's mobile equipment in the same band and automobile noise from each part of vehicle can be the main factors that can cause increasing error rate of control signal. With these (actors, we focus on the Eb/No the BER performance of WLAN for analyzing the characteristic of interference factors by the measured bit error rate.

A Study on Combustion and Emission Characteristics in Compression Ignition CRDI Diesel Engine (직접분사식 압축점화 디젤엔진의 연소 및 배기특성에 관한 연구)

  • Kim, Gi-Bok;Choi, Il-Dong;Ha, Ji-Hoon;Kim, Chi-Won;Yoon, Chang-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.4
    • /
    • pp.234-244
    • /
    • 2014
  • Recently it has been focused that the automobile engine has developed in a strong upward tendency for the use of the high viscosity and poorer quality fuels in achieving the high performance, fuel economy, and emission reduction. Therefore it is not easy to solve the problems between low specific fuel consumption and exhaust emission control at motor cars. In this study, it is designed and used the engine test bed which is installed with turbocharger and intercooler. In addition to equipped using CRDI by controlling injection timing with mapping modulator, it has been tested and analyzed the engine performance, combustion characteristics, and exhaust emission as operating parameters, and they were engine speeds(rpm), injection timing(bTDC), and engine load(%). From the result of an experimental analysis, peak cylinder pressure and the rate of pressure rise were increased, and the location of it was closer toward top dead center according to the increasing of engine speed and load, and with advancing injection timing. The combustion characteristics are effected by fuel injection timing due to be enhanced the mass burned fraction. Using the engine dynamometer for analyzing the engine performance, the engine torque and power have been enhanced according to advancing the fuel injection timing. In analyzing of exhaust emission, there has been a trade-off between PM and NOx with increasing of engine speed and load, and with advanced injection timing. The experimental data are shown that the formation of NOx has increased and PM, vice versa.

Development of a self-leveling system for the bucket of an agricultural front-end loader using an electro hydraulic proportional valve and a tilt sensor (전자유압 비례밸브와 경사센서를 이용한 농용 프론트 로더 버켓 능동수평유지 시스템 개발)

  • Lee, Chang Joo;Ha, Jong Woo;Choi, Deok Su;Kim, Hak Jin
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.60-70
    • /
    • 2015
  • A front-end loader (FEL) mounted on an agricultural tractor is one of the most commonly used implements for farm work. However, when the tractor carries material using the bucket attached to the FEL on a sloping ground, the materials can spill or roll back over the operator due to the tilted body, thereby requiring the bucket surface to remain level at a constant value regardless of varying slopes. In this study, an active system for controlling the angle of the FEL bucket on a tractor based on the real-time measurement of ground slopes was developed to enable the bucket to constantly remain level. A FEL simulator operated based on an electro hydraulic proportional valve (EHPV) was constructed in the laboratory to develop a proportional-integral-derivative (PID) controller forming a virtual electronic control unit (ECU) on the computer, which could automatically adjust the bucket angles depending on varying input angles while sending SAE-J1939 associated messages via CAN BUS to the EHPV. The different parameter values for the PID controller due to the gravity effect of the bucket were determined using a manual PID tuning method while assuming that the tractor travels on either an ascending slope or a descending slope. The developed PID control-based self-leveling system showed a mean of steady-state errors of within $1^{\circ}$ and a mean of delayed times of ~ 0.8s when the step input of $+20^{\circ}$ was given, implying that the developed system and control algorithm would be effective in maintaining the bucket angle at a certain value. Future studies include the improvement of the control algorithm to reduce such a time delay as well as the application of the developed algorithm to the FEL mounted on a tractor tested at a testing ground.

Study of Examples for Air Bag Non-deployment Including Rear Collision and Failure Phenomenon by Damage of Control Parts in Vehicle Air Bag (자동차 에어백의 제어부품 불량에 의한 고장현상 및 후방 추돌에 관련된 에어백 미전개에 대한 사례 연구)

  • Lee, Il Kwon;Kim, Young Gyu;Moon, Hak Hook
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.102-106
    • /
    • 2012
  • The purpose of this paper is to study the failure cases in relation to system of Air Bag in vehicle happened in the field. In the first example, it was separated the soldering parts connected the wire pin between air bag module and clock spring of air bag. Whenever the pin shake by the car's vibration, the driver verified the malfunction phenomenon appeared air bag warning lamp on instrument panel in front of driver's seat. in car inside room. The second example, it verified the warning lamp lighting phenomenon of air bag by produced the circuit plate non-contacting of single an element in air bag electronic control unit. The third example, it verified the light of air bag warning indicator lamp by separated with soldering parts connecting inner pin and resistance terminal of seat belt pretensioner using passenger seat. The fourth example, when the passenger car crash a back of truck, the former bumper get jammed under the latter as the roof height of car low less than that. Therefore, the impact of Car's collision verified that don't transfer with body frame of vehicle because of no attachment impact sensor in it.