• 제목/요약/키워드: electron transporting material

검색결과 55건 처리시간 0.025초

페로브스카이트 태양전지에서의 저온 용액 공정의 BCP 버퍼층 효과 (Impact of Solution-Processed BCP Buffer Layer on Efficient Perovskite Solar Cells)

  • 정민수;최인우;김동석
    • 한국전기전자재료학회논문지
    • /
    • 제34권1호
    • /
    • pp.73-77
    • /
    • 2021
  • Inorganic-organic hybrid perovskite solar cells have demonstrated considerable improvements, reaching 25.5% of certified power conversion efficiency in 2020 from 3.8% in 2009. In normal structured perovskite solar cells, TiO2 electron-transporting materials require heat treatment process at a high temperature over 450℃ to induce crystallinity. Inverted perovskite solar cells have also been studied to exclude the additional thermal process by using [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as a non-oxide electron-transporting layer. However, the drawback of the PCBM layer is a charge accumulation at the interface between PCBM and a metal electrode. The impact of bathocuproin (BCP) buffer layer on photovoltaic performance has been investigated herein to solve the problem of PCBM. 2-mM BCP-modified perovskite solar cells were observed to exhibit a maximum efficiency of 12.03% compared with BCP-free counterparts (5.82%) due to the suppression of the charge accumulation at the PCBM-Au interface and the resulting reduction of the charge recombination between perovskite and the PCBM layer.

다양한 리간드를 갖는 Europium Complex의 전기적 광학적 특성

  • 이상필;표상우;이명호;이한성;김영관;김정수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 추계학술대회 논문집
    • /
    • pp.299-302
    • /
    • 1998
  • Electroluminescent(EL) devices based on organic materials have been of great interest due to their possible applications for large-area flat-panel displays. They are attractive because of multicolor emission low operation voltage. In this study, several Eu complexes such as Eu(TPB)$_3$(Phen) and Eu(TPB)$_3$(Bpy) were synthesized and the photoluminescence(PL) and electroluminescence (EL) characteristics of their thin films were investigated by fabricating the devices having a structure of glass substrate/ITO/TPD/Europium-complexs/Alq$_3$/Al, where aromatic diamine(TPD) was used as an hole transporting and Alq$_3$ was used as an electron transporting materials. It was found that the photoluminescence(PL) and electroluminescence(EL) characteristics of these Europium complexes were dependent upon the ligands coordinated to Europium metal. Details on the explanation of electrical transport phenomena of the structure with I-V characteristics of the OLEDs using the trapped-charge-limited current(TCLC) model will be discussed.

  • PDF

Novel Bipolar Host Materials for Phosphorescent OLEDs

  • Yu, Eun-Sun;Kim, Nam-Soo;Kim, Young-Hoon;Chae, Mi-Young;Chang, Tu-Won
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.636-639
    • /
    • 2007
  • We have developed novel bipolar host materials, designed to have both electron transporting and hole transporting abilities, which show significant increase in luminance efficiency and decrease in driving voltage of green phosphorescent OLEDs. In case of the best host material, CheilGH-3, the driving voltage was decreased 27 % at a given constant luminance of $1000cd/m^2$. Also the luminance efficiency was enhanced 44 % and the power efficiency was almost doubled compared to the reference device using CBP as a host.

  • PDF

진공 증착법에 의한 다양한 Terbium Complexes 박막의 광학적 및 전기적 특성 연구 (Photoluminescent and Electroluminescent Characteristics of Thin Films of Terbium Complex with Various Ligand Prepared by Vacuum Evaporation Method)

  • 표상우;이명호;이한성;김영관;김정수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 추계학술대회 논문집
    • /
    • pp.315-318
    • /
    • 1998
  • Organic light-emitting diodes(OLEDs) or electroluminescent devices have attracted much attention because of their possible application as large-area light-emitting displays. Their structure was based on employing a multilayer device structure containing an emitting layer and a carrier transporting layer of suitable organic materials. In this study, several Tb complexes such as Tb(ACAC)$_3$(Phen), Tb(ACAC)$_3$(Phen-Cl) and Tb(TPB)$_3$(Phen) were synthesized and the photoluminescence(PL) and electroluminescence (EL) characteristics of their thin films were investigated by fabricating the devices having a structure of anode/HTL/terbium-oomplex/ETL/cathode, where TPD was used as an hole transporting and Alq$_3$ and TAZ-Si were used as an electron transporting materials. It was found that the photoluminescence(PL) and electroluminescence(EL) characteristics of these terbium complexes were dependent upon the ligands coordinated to terbium metal. Details on the explanation of electrical transport phenomena of the structure with I-V characteristics of the OLEDs using the trapped-charge-limited current(TCLC) model will be discussed.

  • PDF

알칼리 금속 전자 주입층을 사용한 유기 전기 발광 소자 (OLED)의 전기적 특성 (Electrical Characteristics of Organic Light Emitting Diodes (OLED) using the Alkali Metal Complex as New Electron Injection Layers)

  • 이현구;김준호;김영관
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.1015-1018
    • /
    • 2004
  • We investigate the influence of the New Electron Injection Layers (EIL) on the performance of the Alkali Metal Complex vapor-deposited Organic Light Emitting Diodes(OLED). Two different Alkali Metal Complex were used; Lithium Quinolate (Liq), and Sodium Quinolate (Naq). In all cases, $Alq_3$ was the Electron Transporting Layer (ETL). We measure and compare the current density-voltage (J-V) and luminance-voltage (L-V) characteristics. We concluded that the turn-on voltage, and luminance efficiency are controlled by the type of EIL material used. We show the longer life-time OLED with Alkali Metal Complex EIL than OLED with LiF EIL. And we show the Optimized Alkali Metal Complex thickness is 3nm. Existent LiF to because is inorganic material, there is trouble to do epitaxy into thin layers but regulates the thickness in case of Alkali Metal Complex matter characteristic that is easy be. Alkali Metal Complex also appeared by sensitive thing in thickness than LiF If utilize this material, It is thought much advantages may be at common use of OLED.

  • PDF

유기 발광 소자에서 정공 주입 버퍼층의 효과 (Effects of Hole-Injection Buffer Layer in Organic Light-Emitting Diodes)

  • 정동희;김상걸;오현석;홍진웅;이준웅;김영식;김태완
    • 한국전기전자재료학회논문지
    • /
    • 제16권9호
    • /
    • pp.816-825
    • /
    • 2003
  • Current-voltage-luminance characteristics of organic light-emitting diodes (OLEDs) were measured in the temperature range of 10 K~300 K. Indium-tin-oxide (ITO) was used as an anode and aluminum as a cathode in the device. Organic of N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine (TPD) was used for a hole transporting material, and tris (8-hydroxyquinolinato) aluminum (Alq$_3$) for an electron transporting material and emissive material. And copper phthalocyanine (CuPc), poly(3,4-ethylenedi oxythiophene);poly(styrenesulfonate) (PEDOT:PSS), and poly(N-vinylcarbazole) (PVK) were used for hole-injection buffer layers. From tile analysis of electroluminescence (EL) and photoluminesccnce (PL) spectra of the Alq$_3$, the EL spectrum is more greenish then that of PL. And the temperature-dependent current-voltage characteristics were analyzed in the double and multilayer structure of OLEDS. Electrical conduction mechanism was explained in the region of high-electric and low-electric field. Temperature-dependent luminous efficiency and operating voltage were analyzed from the current-voltage- luminance characteristics of the OLEDS.

신규 비공액성 청색발광재료 PPPMA-co-DTPM 공중합체 합성을 통한 백색유기발광소자 제작 (Fabrication of a White Organic Light Emitting Diode By Synthesizing a Novel Non-conjugated Blue Emitting Material PPPMA-co-DTPM Copolymer)

  • 조재영;오환술;김태구;윤석범
    • 한국전기전자재료학회논문지
    • /
    • 제18권7호
    • /
    • pp.641-646
    • /
    • 2005
  • To fabricate a single layer white organic light emitting diode (OLED), a novel non-conjugated blue emitting material PPPMA-co-DTPM copolymer was synthesized containing a perylene moiety unit with hole transporting and blue emitting ability and a triazine moiety unit with electron transporting ability. The devices were fabricated using PPPMA-co-DTPM $(PPPMA[70\;wt\%]:DTPM[30\;wt\%])$ copolymer by varying the doping concentrations of each red, green and blue fluorescent dye, by molecular-dispersing into Toluene solvent with spin coating method. In case of ITO/PPPMA-co-DTPM:TPB$(3\;mol\%):C6(0.04\;mol\%):NR(0.015\;mol\%)/Al$ structure, as they were molecular-dispersing into 30 mg/ml Toluene solvent, nearly-pure white light was obtained both (0.325, 0.339) in the CIE coordinates at 18 V and (0.335, 0.345) at 15 V. The turn-on voltage was 3 V, the light-emitting turn-on voltage was 4 V, and the maximum external quantum efficiency was $0.667\%$ at 24.5 V. Also, in case of using 40 mg/ml Toluene solvent, the CIE coordinate was (0.345, 0.342) at 20 V.

진공 증착법에 의한 Terbium Comp1exes를 이용한 유기 전기 발광 소자의 에너지 밴드에 관한 연구 (Energy Band Schemes in Organic Electroluminescent Devices Using Terbium Complexes Prepared by Vacuum Evaporation Method)

  • 표상우;김옥병;이한성;최돈수;이승희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.582-588
    • /
    • 1999
  • 정보화 사회의 발전과 함께 멀티미디어에 대한 관심이 집중되고 있으며, 점유 공간이 작고 가벼우며 대면적이 가능한 정보 표시 디스플레이에 대한 기술은 고부가가치 산업으로 인식되어 지고 있다. 이러한 정보 표시 디스플레이들 중, 전기 발광 소자 (Electroluminescence Display : ELD), 액정 표시 디스플레이 (Liquid Crystal Display LCD), 플라즈마 디스플레이 (Plasma Display Panel) 등의 대한 연구가 세계적으로 매우 활발하게 진행되고 있다. 본 연구에서는 란탄 계열의 금속 착 화합물인 Tb(ACAC)$_3$(Phen)과 Tb(ACAC)$_3$(Phen-Cl)를 이용해 다비이스를 제작한후 광학적 및 전기적 특성을 조사하였다. 또한 luminous efficiency와 cyclic voltametric 방법을 이용해 에너지 밴드로 두 발광 물질인 Tb(ACAC)$_3$(Phen)과 Tb(ACAC)$_3$(Phen-Cl)을 비교.분석하였다. 본 연구의 디바이스 구조를 보면 anode/hole transporting layer (HTL)/emitting material layer (EML)/electron transporting layer (ETL)/cathode와 같고 ETL를 aluminum-tris- (8-hydroxyquinoline) (Alq$_3$)와 bis(10-hydroxybenzo(h)quinolinato)beryllium (Bebq$_2$)를 사용하였으며 HTL 로 N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD)를 사용하였다.

  • PDF

Novel Host materials for Phosphorescent OLEDs with long lifetime

  • Kim, Young-Hoon;Yu, Eun-Sun;Kim, Nam-Soo;Jung, Sung-Hyun;Kim, Hyung-Sun;Lee, Ho-Jae;Kang, Eui-Su;Chae, Mi-Young;Chang, Tu-Won
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.549-552
    • /
    • 2008
  • We have developed a novel bipolar host material with both electron and hole transporting characteristics. Since CGH(Cheil Green Host) has some electron transporting characteristics, it shows increased luminance efficiency in device including TCTA and without HBL(hole blocking layer:BAlq). Maximum power efficency of CGH was 27.4lm/W at the device structure ITO/DNTPD(60)/NPB(20)/TCTA(10)/EML(30)/Alq3(20)/LIF(1)/Al. We measured device performance again without HBL. The result of CGH showing 26.0lm/W is outstanding compared to that of CBP showing 19.1lm/W without holeblocking layer. We also measured lifetime and found to be 205hr at 3000nit, that is significant result compared to the life time of CBP device showing 82hr. CGH shows high device performance with holeblocking layer. Moreover, it shows better device performance and life time than those of CBP without holeblocking.

  • PDF