DOI QR코드

DOI QR Code

Impact of Solution-Processed BCP Buffer Layer on Efficient Perovskite Solar Cells

페로브스카이트 태양전지에서의 저온 용액 공정의 BCP 버퍼층 효과

  • Jung, Minsu (School of Chemical & Environmental Engineering, Dong-Eui University) ;
  • Choi, In Woo (Ulsan Advanced Energy Technology R & D Center, Korea Institute of Energy Research) ;
  • Kim, Dong Suk (Ulsan Advanced Energy Technology R & D Center, Korea Institute of Energy Research)
  • 정민수 (동의대학교 화학환경공학부) ;
  • 최인우 (한국에너지기술연구원 울산차세대전지연구개발센터) ;
  • 김동석 (한국에너지기술연구원 울산차세대전지연구개발센터)
  • Received : 2020.10.12
  • Accepted : 2020.11.09
  • Published : 2021.01.01

Abstract

Inorganic-organic hybrid perovskite solar cells have demonstrated considerable improvements, reaching 25.5% of certified power conversion efficiency in 2020 from 3.8% in 2009. In normal structured perovskite solar cells, TiO2 electron-transporting materials require heat treatment process at a high temperature over 450℃ to induce crystallinity. Inverted perovskite solar cells have also been studied to exclude the additional thermal process by using [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as a non-oxide electron-transporting layer. However, the drawback of the PCBM layer is a charge accumulation at the interface between PCBM and a metal electrode. The impact of bathocuproin (BCP) buffer layer on photovoltaic performance has been investigated herein to solve the problem of PCBM. 2-mM BCP-modified perovskite solar cells were observed to exhibit a maximum efficiency of 12.03% compared with BCP-free counterparts (5.82%) due to the suppression of the charge accumulation at the PCBM-Au interface and the resulting reduction of the charge recombination between perovskite and the PCBM layer.

Keywords

References

  1. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc., 131, 6050 (2009). [DOI: https://doi.org/10.1021/ja809598r]
  2. NERL, Best Research-cell Efficiencies, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200925.pdf (2020).
  3. M. Jung and S. I. Seok, J. Korean Inst. Electr. Electron. Mater. Eng., 33, 118 (2020). [DOI: https://doi.org/10.4313/KEM.020.33.2.118]
  4. G. Kim, H. Min, K. S. Lee, D. Y. Lee, S. M. Yoon, and S. I. Seok, Science, 370, 108 (2020). [DOI: https://doi.org/0.1126/science.abc4417] https://doi.org/10.1126/science.abc4417
  5. M. Jung, T. J. Shin, J. Seo, G. Kim, and S. I. Seok, Energy Environ. Sci., 11, 2188 (2018). [DOI: https://doi.org/10.1039/8EE00995C]
  6. C. Chen, S. Zhang, S. Wu, W. Zhang, H. Zhu, Z. Xiong, Y. Zhang, and W. Chen, RSC Adv., 7, 35819 (2017). [DOI: https://doi.org/10.1039/c7ra06365b]
  7. N. Shibayama, H. Kanda, T. W. Kim, H. Segawa, and S. Ito, APL Mater., 7, 031117 (2019). [DOI: https://doi.org/10.1063/1.087796]
  8. Y. Wang, J. Zhang, Y. Wu, Z. Yi, F. Chi, H. Wang, W. Li, Y. Zhang, X. Zhang, and L. Liu, Semicond. Sci. Technol., 34, 075023 (2019). [DOI: https://doi.org/10.1088/1361-6641/b2309]
  9. X. Zhang, C. Liang, M. Sun, H. Zhang, C. Ji, Z. Guo, Y. Xu, F. Sun, Q. Song, and Z. He, Phys. Chem. Chem. Phys., 20, 7395 (2018). [DOI: https://doi.org/10.1039/C8CP00563J]
  10. Z. Q. Zhao, S. You, J. Huang, L. Yuan, Z. Y. Xiao, Y. Cao, N. Cheng, L. Hu, J. F. Liu, and B. H. Yu, J. Mater. Chem. C, 7, 9735 (2019). [DOI: https://doi.org/10.1039/C9TC03259B]
  11. J. Seo, S. Park, Y. C. Kim, N. J. Jeon, J. H. Noh, S. C. Yoon, and S. I. Seok, Energy Environ. Sci., 7, 2642 (2014). [DOI: https://doi.org/10.1039/C4EE01216J]