• Title/Summary/Keyword: electron microscope analysis

Search Result 1,017, Processing Time 0.03 seconds

Analysis of machining characteristics of thermogravimetric analysis and high-power density electron beam through the development of vaporized amplification sheets according to metal powder (Metal Powder에 따른 증기화 증폭 시트의 개발을 통한 열 중량 분석 및 고출력 전자빔의 가공 특성 분석)

  • Kim, Hyun-Jeong;Jung, Sung-Taek;Lee, Joo-Hyung;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.56-62
    • /
    • 2020
  • An electron beam was used to mainly utilize for polishing, finishing, welding, a lithography process, etc. Due to the high technical level of difficulty of high-power density electron beam, it is difficult to secure related technologies. In this study, research was carried out to improve the machinability by developing the vaporized amplification sheets to realize the electron beam drilling technology. Their vaporized amplification sheets were analyzed by using the measurement of chemical and composition, which is such as TGA, SEM. We analyzed micro-hole processing using a microscope. Also, the thermal characteristics of vaporized amplification sheets are highly significant for applying to high-power density electron beam technique. So, we finished the vaporized amplification sheets according to the process conditions and analyzed it according to the machining conditions of the electron beam. It was confirmed that the effect on the experimental results differs depending on the influence of the metal powder contained in the developed material.

Analysis and Investigation of Archaeological Chemistry on the Class Beads of Dujeong-dong site of Cheonan, Korea (천안 두정동 출토 유리구슬의 고고화학적 분석 고찰)

  • Song, Yu-Na;Kim, Gyu-Ho
    • Journal of Conservation Science
    • /
    • v.18 s.18
    • /
    • pp.5-18
    • /
    • 2006
  • Dujeong-dong site of Cheonan is known as the site of Baekje period in the first half of the fourth century. This study investigated the visible properties and the chemical composition of the 18 pieces of the glass found in the site, and considered scientific properties and periodic interrelationship of the glass on the basis of the analysis result. The observation of the visible properties and microstructure of ancient glass was performed with both an electron microscope and an optical microscope, and the chemical composition was conducted by way of both quantitative and qualitative analysis using Scanning Electron Microscope(SEM) with Energy Dispersive Spectrometer(EDS). In the analysis result, various chemical composition systems are identified in the glass beads of Dujeong-dong site, such as lead-barium, soda and potash glass, and also different shapes were found such as gold foil glass beads, tubular beads, and round beads. It is estimated that the classification of glass by means of its chemical composition was also closely related to the color of glass.

  • PDF

Three-Dimensional Automated Crystal Orientation and Phase Mapping Analysis of Epitaxially Grown Thin Film Interfaces by Using Transmission Electron Microscopy

  • Kim, Chang-Yeon;Lee, Ji-Hyun;Yoo, Seung Jo;Lee, Seok-Hoon;Kim, Jin-Gyu
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.183-188
    • /
    • 2015
  • Due to the miniaturization of semiconductor devices, their crystal structure on the nanoscale must be analyzed. However, scanning electron microscope-electron backscatter diffraction (EBSD) has a limitation of resolution in nanoscale and high-resolution electron microscopy (HREM) can be used to analyze restrictive local structural information. In this study, three-dimensional (3D) automated crystal orientation and phase mapping using transmission electron microscopy (TEM) (3D TEM-EBSD) was used to identify the crystal structure relationship between an epitaxially grown CdS interfacial layer and a $Cu(In_xGa_{x-1})Se_2$ (CIGS) solar cell layer. The 3D TEM-EBSD technique clearly defined the crystal orientation and phase of the epitaxially grown layers, making it useful for establishing the growth mechanism of functional nano-materials.

Analysis of the Coloration Characteristics of Copper Red Glaze Using Raman Microscope (Raman Microscope를 이용한 진사 유약 발색 특성 분석)

  • Eo, Hye-Jin;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.518-522
    • /
    • 2013
  • This study investigatesthe coloration mechanism by identifying the factor that affects thered coloration of copper red glazesin traditional Korean ceramics. The characteristics of the reduction-fired copper red glaze's sections are analyzed using an optical microscope, Raman spectroscopy, scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). The sections observed using an optical microscope are divided into domains of surface, red-bubble, and red band. According to the Raman micro spectroscopy analysis results, the major characteristic peak is identified as silicate in all three domains, and the intensity of $Cu_2O$ increases toward the red band. In addition, it is confirmed that the most abundant CuO exists in the glaze bubbles. Moreover, CuO and $Cu_2O$ exist as fine particles in a dispersed state in the surface domain. Thus, Cu combined with oxygen is distributed evenly throughout the copper red glaze, and $Cu_2O$ is more concentrated toward the interface between body and glaze. It is also confirmed that CuO is concentrated around the bubbles. Therefore, it is concluded that the red coloration of the copper red glaze is revealed not only through metallic Cu but also through $Cu_2O$ and CuO.

Synthesize multi-walled carbon nanotubes via catalytic chemical vapour deposition method on Fe-Ni bimetallic catalyst supported on kaolin

  • Aliyu, A;Abdulkareem, AS;Kovo, AS;Abubakre, OK;Tijani, JO;Kariim, I
    • Carbon letters
    • /
    • v.21
    • /
    • pp.33-50
    • /
    • 2017
  • In this study, Fe-Ni bimetallic catalyst supported on kaolin is prepared by a wet impregnation method. The effects of mass of kaolin support, pre-calcination time, pre-calcination temperature and stirring speed on catalyst yields are examined. Then, the optimal supported Fe-Ni catalyst is utilised to produce multi-walled carbon nanotubes (MWCNTs) using catalytic chemical vapour deposition (CCVD) method. The catalysts and MWCNTs prepared using the optimal conditions are characterized using high resolution transmission electron microscope (HRTEM), high-resolution scanning electron microscope (HRSEM), electron diffraction spectrometer (EDS), selected area electron diffraction (SAED), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), and X-ray diffraction (XRD). The XRD/EDS patterns of the prepared catalyst confirm the formation of a purely crystalline ternary oxide ($NiFe_2O_4$). The statistical analysis of the variance demonstrates that the combined effects of the reaction temperature and acetylene flow rate predominantly influenced the MWCNT yield. The $N_2$ adsorption (BET) and TGA analyses reveal high surface areas and thermally stable MWCNTs. The HRTEM/HRSEM micrographs confirm the formation of tangled MWCNTs with a particle size of less than 62 nm. The XRD patterns of the MWCNTs reveal the formation of a typical graphitized carbon. This study establishes the production of MWCNTs from a bi-metallic catalyst supported on kaolin.

Effects of Oxide Layer Formed on TiN Coated Silicon Wafer on the Friction and Wear Characteristics in Sliding (미끄럼운동 시 TiN 코팅에 형성되는 산화막이 마찰 및 마멸 특성에 미치는 영향)

  • 조정우;이영제
    • Tribology and Lubricants
    • /
    • v.18 no.4
    • /
    • pp.260-266
    • /
    • 2002
  • In this study, the effects of oxide layer farmed on the wear tracks of TiN coated silicon wafer on friction and wear characteristics were investigated. Silicon wafer was used for the substrate of coated disk specimens, which were prepared by depositing TiN coating with 1 ${\mu}{\textrm}{m}$ in coating thickness. AISI 52100 steel ball was used fur the counterpart. The tests were performed both in air for forming oxide layer on the wear track and in nitrogen to avoid oxidation. This paper reports characterization of the oxide layer effects on friction and wear characteristics using X-ray diffraction(XRD), Auger electron spectroscopy(AES), scanning electron microscopy (SEM) and multi-mode atomic force microscope(AFM).

A Development of Electron Optics System of Mini-Sized SEM (소형주사전자현미경용 전자공학계의 개발)

  • Park, Man-Jin;Kim, Il-Hae;Kim, Dong-Hwan;Jang, Dong-Young;Han, Dong-Chul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.140-144
    • /
    • 2007
  • As an electron scanning microscopes has traditionally required a considerably large room equipped with several service and pipe lines due to its inherent size. As an alternative, a small sized SEM, simply called a mini-SEM, is introduced even if the performance in terms of magnification and resolution is a little inferior to a classical thermal SEM. However, the size and fabrication cost is dramatically reduced, dedicating to opening a new market. The optical system in the mini-SEM is redesigned and specimen stage is quitely reduced and vertical axis is excluded. The design tools and calibration techniques to develope the mini-SEM are introduced and its performance is verified through numerical analysis experiments.

Analysis of Properties Variation of Thermal Deteriorated 600V Grade Hest-Resistant Polyvinyl Chloride Insulated Wires (열열화된 600V 2종 비닐절연전선의 특성변화 분석)

  • Choe, Chung-Seok;Lee, Gyeong-Seop;Lee, Deok-Chul
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.1
    • /
    • pp.8-12
    • /
    • 2000
  • The properties variation by deterioration of the 600V grade heat-resistant polyvinyl chloride insulated wire(HIV) was analyzed. The weight variation of the thermal deteriorated HIV was about 42% at 80$0^{\circ}C$ and over. From the analysis result of the metallurgical microscope photographs it shows that the sorface of normal wire showed the elongated structures. However the elongated structures did not appear at $900^{\circ} and over and we could observe that particles were grown. The grown oxidized substances in the thermally deteriorated electric wire were observed by SEM. The CuL, CuK, $CuK_b$, OK and CIK spectra of the thermally deteriorated HIV at $300^{\circ}C$ were uniform regardless of the scanning length, but the spectra of CIK could not found at above $700^{\circ}. At the DTA analysis, the endothermic reactions were occurred around $3006{\circ}C\; and\; 400^{\circ}C$ and the exothermic reactions were occurred around $470^{\circ}, respectively.

  • PDF

Microstructure and Elevated Temperature Strength of W-ZrC Composites with Micrometric and Nanosized ZrC Particles (서로 다른 입자크기의 ZrC가 첨가된 W-ZrC 복합체의 미세구조 및 고온강도에 관한 연구)

  • Han, Yoon Soo;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.21 no.6
    • /
    • pp.415-421
    • /
    • 2014
  • W-10vol.%ZrC composites reinforced by micrometric and nanosized ZrC particles were prepared by hot-pressing of 25 MPa for 2 h at $1900^{\circ}C$. The effect of ZrC particle size on microstructure and mechanical properties at room temperature and elevated temperatures was investigated by X-ray diffraction analysis, scanning electron microscope and transmission electron microscope observations and the flexural strength test of the W-ZrC composite. Microstructural analysis of the W-ZrC composite revealed that nanosized ZrC particles were homogeneously dispersed in the W matrix inhibiting W grain growth compared to W specimen with micrometric ZrC particle. As a result, its flexural strength was significantly improved. The flexural strength at room temperature for W-ZrC composite using nanosized ZrC particle being 740 MPa increased by around 2 times than that of specimen using micrometric ZrC particle which was 377 MPa. The maximum strength of 935 MPa was tested at $1200^{\circ}C$ on the W composite specimen containing nanosized ZrC particle.

Evaluation of soil spatial variability by micro-structure simulation

  • Fei, Suozhu;Tan, Xiaohui;Wang, Xue;Du, Linfeng;Sun, Zhihao
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.565-572
    • /
    • 2019
  • Spatial variability is an inherent characteristic of soil, and auto-correlation length (ACL) is a very important parameter in the reliability or probabilistic analyses of geotechnical engineering that consider the spatial variability of soils. Current methods for estimating the ACL need a large amount of laboratory or in-situ experiments, which is a great obstacle to the application of random field theory to geotechnical reliability analysis and design. To estimate the ACL reasonably and efficiently, we propose a micro-structure based numerical simulation method. The quartet structure generation set algorithm is used to generate stochastic numerical micro-structure of soils, and scanning electron microscope test of soil samples combined with digital image processing technique is adopted to obtain parameters needed in the QSGS algorithm. Then, 2-point correlation function is adopted to calculate the ACL based on the generated numerical micro-structure of soils. Results of a case study shows that the ACL can be estimated efficiently using the proposed method. Sensitivity analysis demonstrates that the ACL will become stable with the increase of mesh density and model size. A model size of $300{\times}300$ with a grid size of $1{\times}1$ is suitable for the calculation of the ACL of clayey soils.