• Title/Summary/Keyword: electron metabolism

검색결과 115건 처리시간 0.024초

진도견 정세관의 정세포와 Sertoli 세포내 glycogen의 분포 (Glycogen distribution of germ cells and Sertoli cells of seminiferous tubules in Jindo dog)

  • 박영석;이성호
    • 대한수의학회지
    • /
    • 제36권3호
    • /
    • pp.521-529
    • /
    • 1996
  • In an effort to obtain basic data of carbohydrate metabolism during spermiogenesis of the sexually-matured Jindo dog, the glycogen distribution in the testis was investigated by light and transmission electron microscopy. Periodic acid thiocarbohydrazide silver proteinate physical development(PA-TCH-SP-PD) staining method provided better results in the detection of glycogen granules from Sertoli cells and germ cells than the periodic acid schiff(PAS) staining method did. Pre-treatment of the tissue sections with ${\alpha}$-amylase elicited a significant decrease in PA-TCH-SP-PD stained granules, which suggested that the stained granules were of glycogen origin. High concentration of the glycogen granules were observed in the Sertoli cells, especially in its column, sheet-like processes, club-like processes, and tubular processes. The glycogen granules were unevenly distributed in some Sertoli cell columns. These results strongly indicated that the Sertoli cells of Jindo dogs showed vigorous activity of carbohydrate metabolism.

  • PDF

Energy Generation Coupled to Azoreduction by Membranous Vesicles from Shewanella decolorationis S12

  • Hong, Yi-Guo;Guo, Jun;Sun, Guo-Ping
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권1호
    • /
    • pp.37-41
    • /
    • 2009
  • Previous studies have demonstrated that Shewanella decolorationis S12 can grow on the azo compound amaranth as the sole electron acceptor. Thus, to explore the mechanism of energy generation in this metabolism, membranous vesicles (MVs) were prepared and the mechanism of energy generation was investigated. The membrane, which was fragmentized during preparation, automatically formed vesicles ranging from 37.5-112.5 nm in diameter under electron micrograph observation. Energy was conserved when coupling the azoreduction by the MVs of an azo compound or Fe(III) as the sole electron acceptor with $H_2$, formate, or lactate as the electron donor. The amaranth reduction by the vesicles was found to be inhibited by specific respiratory inhibitors, including $Cu^{2+}$ ions, dicumarol, stigmatellin, and metyrapone, indicating that the azoreduction was indeed a respiration reaction. This finding was further confirmed by the fact that the ATP synthesis was repressed by the ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD). Therefore, this study offers solid evidence of a mechanism of microbial dissimilatory azoreduction on a subcell level.

- Invited Review - Hydrogen production and hydrogen utilization in the rumen: key to mitigating enteric methane production

  • Roderick I. Mackie;Hyewon Kim;Na Kyung Kim;Isaac Cann
    • Animal Bioscience
    • /
    • 제37권2_spc호
    • /
    • pp.323-336
    • /
    • 2024
  • Molecular hydrogen (H2) and formate (HCOO-) are metabolic end products of many primary fermenters in the rumen ecosystem. Both play a vital role in fermentation where they are electron sinks for individual microbes in an anaerobic environment that lacks external electron acceptors. If H2 and/or formate accumulate within the rumen, the ability of primary fermenters to regenerate electron carriers may be inhibited and microbial metabolism and growth disrupted. Consequently, H2- and/or formate-consuming microbes such as methanogens and possibly homoacetogens play a key role in maintaining the metabolic efficiency of primary fermenters. There is increasing interest in identifying approaches to manipulate the rumen ecosystem for the benefit of the host and the environment. As H2 and formate are important mediators of interspecies interactions, an understanding of their production and utilization could be a significant starting point for the development of successful interventions aimed at redirecting electron flow and reducing methane emissions. We conclude by discussing in brief ruminant methane mitigation approaches as a model to help understand the fate of H2 and formate in the rumen ecosystem.

Anaerobic Degradation of Aromatic Compounds by Microorganisms in Paddy Field

  • Katayama, A.;Yoshida, N.;Shibata, A.;Baba, D.;Yang, S.;Li, Z.;Kim, H.;Zhang, C.;Suzuki, D.
    • 한국환경농학회:학술대회논문집
    • /
    • 한국환경농학회 2011년도 30주년 정기총회 및 국제심포지엄
    • /
    • pp.128-135
    • /
    • 2011
  • Consortia demonstrated the high capacities of anaerobic degradation of various aromatic compounds, which were successfully enriched from gley paddy soils under different conditions. Phenol and cresol was decomposed anaerobically using nitrate, ferric oxide or sulfate as electron acceptors. Biphenyl was degraded to $CO_2$, especially without addition of external electron acceptor. Alkylphenols with middle length of alkyl chain, were co-metaboliocally degraded with the presence of hydroxylbenzoate as the co-substrate under nitrate reducing conditions. The microorganisms responsible for the anaerobic co-metabolism was Thauera sp. Reductive dechlorination activity was also observed for polychlorophenols, fthalide, polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins with the presence of lactate, formate or $H_2$ as electron donor. The fthalide dechlorinator was classified as Dehalobacter sp. Coupling of two physiologically-distinct anaerobic consortia, aromatic ring degrader and reductive dechlorinator, resulted in the mineralization of pentachlorophenol under anaerobic conditions. These results suggested that gley paddy soils harbored anaerobic microbial community with versatile capacity degrading aromatic compounds under anaerobic conditions.

  • PDF

제초제 Paraquat의 전자수용 및 방출에 대한 영향 (Effect of Herbicide Paraquat on Electron Donor and Acceptor)

  • 김미림;최경호
    • 생명과학회지
    • /
    • 제15권2호
    • /
    • pp.311-315
    • /
    • 2005
  • Pparaquat의 전자수용 및 방출에 대한 작용을 검토한 결과는 다음과 같다. Rat mitocondria분산액에 paraquat를 첨가하였을 때 반응액이 청색으로 변색되었으며 Aluminium 박 또는 동전극을 장치한 photo cell중에서 paraquat에 전류를 통한 경우에도 음극에서부터 청색으로 변색되기 시작하여 660 nm에서 높은 홉광도를 나타내었다. 이 착색반응은 반응액에 산소를 첨가함으로서 탈색되었다. Paraquat에 $H^+$을 첨가하고 전류를 통한 결과 340 nm에서의 홉광도가 증가되었으며 경시적인 흡광도 증가의 모양은 $NAD^+$에 전류를 통한 경우와 거의 일치하였다. 이상의 결과로부터 paraquat가 전자를 수용 또는 방출할 수 있음이 확인되었고 이러한 paraquat의 작용이 생체내에 이화작용에서 생성되는 전자를 포획하고 산소에 직접 넘겨줌으로써 cytochrome 호흡쇄로의 단계별 전자전달계가 차단되어 급성독성을 일으키는 요인으로 추정된다.

Identification of Propentofylline Metabolites in Rats by Gas Chromatography/Mass Spectrometry

  • Kwon, Oh-Seung;Ryu, Jae-Chun
    • Archives of Pharmacal Research
    • /
    • 제23권4호
    • /
    • pp.374-380
    • /
    • 2000
  • Propentofylline (PPF, 3-methyl-1-(5-oxohexyl)-7-propylxanthine) has been reported to be a compound for treatment of both vascular dementia and dementia of the Alzheimer type. The short half-life (about 15 min) of PPF at the terminal elimination phase and poor bioavailability after oral administration of PPF to rabbits (Kim et al., 1992) suggest in part that this drug takes the extensive first-pass metabolism in the liver. In addition, the metabolic pathway for PPF remains unclear. The objective of this experiment is to identify urinary metabolites of PPF in rats. For the identification of the metabolites, rat urine was collected after oral administration of 100${m}g/kg$ PPF. PPF metabolite, 3-methyl-1-(5-hydroxyhexyl)-7-propylxanthine, was synthesized and confirmed by gas chromatography/mass spectroscopy (GC/MS) and $^1H$ nuclear magnetic resonance spectroscopy. The urinary metabolites of PPF were extracted with diethyl ether and identified by electron impact and chemical ionization GC/MS. One urinary metabolite was confirmed to be 3-methyl-1-(5-hydroxyhexyl)-7-propylxanthine by synthesized authentic compound. Several metabolites of monohydroxy- and dihydroxy-PPF were identified based on mass fragmentation of both intact and trimethylsilylated derivatives of PPF metabolites and the novel structure of these metabolites is suggested based on mass spectra.

  • PDF

Gas-Chromatography/Mass Selective Detector를 사용하여 쥐의 뇨시료 중 benzidine 대사체의 확인 및 in vitro 독성 (Identification of Benzidine Metabolites in Rats by Gas Chromatography/Mass Selective Detector and its Toxicity in vitro)

  • 류재천;권오승
    • 약학회지
    • /
    • 제44권5호
    • /
    • pp.384-390
    • /
    • 2000
  • Metabolism study of the dye, benzidine, was performed by gas chromatography-mass selective detector (GC/MSD) in the urine of rats orally administered 100 mg/kg benzidine. Urine samples were collected in metabolic cages for 0-24, 24-48, and 48-72 hrs. Ten ml of the urine was extracted with XAD-2 resin and the XAD-2 column was eluted with methanol. After evaporation, benzidine and its metabolites were extracted with diethyl ether (for non-conjugated fraction). For conjugated metabolites, $\beta$-glucu-ronidase was added to the aqueous layer that was incubated for 1 hr at 5$0^{\circ}C$ and the aqueous layer was extracted as in non-conjugated fraction. Aliquot of trimethylsilylated derivatives was applied to the GC/MSD. The mutagenicity of benzidine and its acetylated metabolites was tested by histidine/reversion assay. Five metabolites observed and confirmed either by electron impact and chemical ionization modes of the GC/MSD, or authentic compounds were monoacetyl-, diacetyl-, hydroxyacetyl-, hydroxydiacetyl-, and hydroxy-benzidine. Monoacetyl-benzidine was more potent than benzidine in histidine/reversion assay. This data indicates that monoacetylation of benzidine may be one of the metabolites produced in metabolic activation process.

  • PDF

감초(Glycyrrhiza uralensis Fisch.)로부터 분리된 flavonoid의 인체 암세포에 대한 세포독성 (Cytotoxic Effect of Flavonoids from the Roots of Glycyrrhiza uralensis on Human Cancer Cell Lines)

  • 박지해;우치엔;유기현;용혜임;조승목;정인식;백남인
    • Journal of Applied Biological Chemistry
    • /
    • 제54권1호
    • /
    • pp.67-70
    • /
    • 2011
  • The roots of Glycyrrhiza uralensis Fisch. were extracted with 30% aqueous ethanol (EtOH), and the concentrated extract was partitioned with n-hexane, chloroform ($CHCl_3$), ethyl acetate (EtOAc), n-butanol (n-BuOH), and $H_2O$, successively. From the $CHCl_3$ fraction, four flavonoids were isolated through the repeated silica gel ($SiO_2$), octadecyl silica gel (ODS), and Sephadex LH-20 column chromatographies (c.c.). According to the results of spectroscopic data including nuclear magnetic resonance spectrometry (NMR), electron ionization mass spectrometry (EI/MS), and infrared spectroscopy (IR), the chemical structures of the compounds were determined as glabrol (1), abyssinone II (2), glabridin (3), and isoliquiritigenin (4). The flavonoids were evaluated for cytotoxic effect against human cancer cell lines, HCT-116, HepG2, HeLa, SK-OV-3, SK-BR-3, MCF-7, and SK-MEL-5. Especially, glabrol (1) and glabridin (2) showed $IC_{50}$ values of lower than $25{\mu}M$.

Effect of Electrochemical Redox Reaction on Growth and Metabolism of Saccharomyces cerevisiae as an Environmental Factor

  • Na, Byung-Kwan;Hwang, Tae-Sik;Lee, Sung-Hun;Ahn, Dae-Hee;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권3호
    • /
    • pp.445-453
    • /
    • 2007
  • The effect of an electrochemically generated oxidation-reduction potential and electric pulse on ethanol production and growth of Saccharomyces cerevisiae ATCC 26603 was experimented and compared with effects of electron mediators (neutral red, benzyl viologen, and thionine), chemical oxidants (hydrogen peroxide and hypochlorite), chemical reductants (sulfite and nitrite), oxygen, and hydrogen. The oxidation (anodic) and reduction (cathodic) potential and electric pulse activated ethanol production and growth, and changed the total soluble protein pattern of the test strain. Neutral red electrochemically reduced activated ethanol production and growth of the test strain, but benzyl viologen and thionine did not. Nitrite inhibited ethanol production but did not influence growth of the test strain. Hydrogen peroxide, hypochlorite, and sulfite did not influence ethanol production and growth of the test strain. Hydrogen and oxygen also did not influence the growth and ethanol production. It shows that the test strain may perceive electrochemically generated oxidation-reduction potential and electric pulse as an environmental factor.

Uncertainty Minimization in Quantitative Electron Spin Resonance Measurement: Considerations on Sampling Geometry and Signal Processing

  • Park, Sangeon;Shim, Jeong Hyun;Kim, Kiwoong;Jeong, Keunhong;Song, Nam Woong
    • 한국자기공명학회논문지
    • /
    • 제24권2호
    • /
    • pp.53-58
    • /
    • 2020
  • Free radicals including reactive oxygen species (ROS) are important chemicals in the research area of biology, pharmaceutical, medical, and environmental science as well as human health risk assessment as they are highly involved in diverse metabolism and toxicity mechanisms through chemical reactions with various components of living bodies. Electron spin resonance (ESR) spectroscopy is a powerful tool for detecting and quantifying those radicals in biological environments. In this work we observed the ESR signal of 2,2,6,6-Tetra-methyl piperidine 1-oxyl (TEMPO) in aqueous solution at various concentrations to estimate the uncertainty factors arising from the experimental conditions and signal treatment methods. As the sample position highly influences the signal intensity, dual ESR tube geometry (consists of a detachable sample tube and a position fixed external tube) was adopted. This type of measurement geometry allowed to get the relative uncertainty of signal intensity lower than 1% when triple measurements are averaged. Linear dependence of signal intensity on the TEMPO concentration, which is required for the quantification of unknown sample, could be obtained over a concentration range of ~103 by optimizing the signal treatment method depending on the concentration range.