• 제목/요약/키워드: electron injection layer

검색결과 168건 처리시간 0.025초

고분자 발광다이오드에서 공액고분자 전해질 전자수송층에 의해 변화되는 전자주입 메카니즘 (Electron Injection Mechanisms Varied by Conjugated Polyelectrolyte Electron Transporting Layers in Polymer Light-Emitting Diodes)

  • 엄성수;박주현
    • 폴리머
    • /
    • 제36권4호
    • /
    • pp.519-524
    • /
    • 2012
  • 공액고분자 전해질 전자수송층을 이용하는 고분자 발광소자의 정전용량을 측정하는 것은 전류밀도-전압-발광특성을 측정하는 방법과 더불어 전자수송층으로서 공액고분자 전해질의 기능을 이해하기 위한 소자물리 연구에서 중요한 정보를 제공해준다. 본 연구에서는 고분자 전해질의 반대 이온의 종류에 따라 저주파수 영역에서 정전용량의 거동이 변화하는 것으로부터 전하 주입의 메카니즘에서 차이점이 있음을 분석하였다. 정전용량 모델을 이용한 분석은 전자주입 메카니즘이 음극/전자수송층/발광층 사이의 계면에서 발생하는 쌍극자 배열 또는 전하수송체의 축적에 의한 것임을 나타내었다.

Alkali & Alkaline-Earth Metal Sources for OLED Devices

  • Tominetti, S.;Cattaneo, L.;Longoni, G.;Bonucci, A.;Toia, L.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1763-1768
    • /
    • 2006
  • Low work function alkali metals and alkaline earths successfully lower the electron injection barrier and increase electron injection into the organic layer in OLED displays, but their implementation is not easy. AlkaMax technology can ensure the required metal evaporation rate in a fast, homogeneous and easily controllable way.

  • PDF

불화리튬 버퍼층에 의한 유기 발광 소자의 전기적인 특성 및 효율 분석 (Efficiency Analysis of Buffer Layer Using UF on the Electrical Characteristics of OLED)

  • 배상호;박형준;남은경;정동근;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.422-423
    • /
    • 2007
  • In this work, Organic Light Emitting Diodes using LiF as a electron-injecting interfacial have been fabricated for efficiency enhancements. This interfacial layer is interposed between Al/$Alq_3$ layer. The brightness and specific character as current density are higher than those of the device without it. To find best thickness of LiF layer, we used some samples with various thickness. The LiF interposition at the Al/$Alq_3$ interface encouraged the electrons injection and balances the injection numbers of hole and electron in the emission layer.

  • PDF

Interfacial Engineering of Polymer Light Emitting Diode

  • Chen, Show-An
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.165-167
    • /
    • 2007
  • The performance of polymer light emitting diode can be improved significantly by interfacial engineering on anode and/or cathode through adjusting the charge injection barriers for holes and electrons. Studies involve CFx and SAM modifications on ITO, thickness and delay time to baking of PEDOT:PSS, and electron injection/hole blocking layer.

  • PDF

Optical Effect due to Thickness Variation of Electron Injection Layer in Organic Light-emitting Diodes

  • Lee, Young-Hwan;Lee, Kang-Won;Yi, Keon-Young;Hong, Jin-Woong;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권1호
    • /
    • pp.20-23
    • /
    • 2008
  • Organic light-emitting diodes (OLEDs) are attractive because of possible application in display with low-operating voltage, low-power consumption, self-emission and capability of multicolor emission by the selection of emissive materials. To investigated the optical effects, we studied the electrical and optical characteristics due to thickness variation of electron injection materials LiF on organic light-emitting diodes in the ITO (indium-tin-oxide)/N,N'-diphenyl-N, N'-bis(3-methyphenyl)-1,1'-biphenyl-4,4'-diamine(TPD)/tris(8-hydroxyquinoline) aluminum $(Alq_3)/LiF$ layer/Al device. We maintained the thicknesses of TPD and $Alq_3$ layers at 40 nm and 60 nm, respectively. The deposition rates of TPD and $Alq_3$ were in the $1.5{\AA}/s$ under a base pressure of $5{\times}10^{-6}$ Torr. It was found that luminance and luminous efficiency of the device with 0.7 nm LiF layer improve 25 times and 7 times than the device without the LiF layer, respectively.

Insertion of an Organic Hole Injection Layer for Inverted Organic Light-Emitting Devices

  • 박순미;김윤학;이연진;김정원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.379-379
    • /
    • 2010
  • Recent technical advances in OLEDs (organic light emitting devices) requires more and more the improvement in low operation voltage, long lifetime, and high luminance efficiency. Inverted top emission OLEDs (ITOLED) appeared to overcome these problems. This evolved to operate better luminance efficiency from conventional OLEDs. First, it has large open area so to be brighter than conventional OLEDs. Also easy integration is possible with Si-based driving circuits for active matrix OLED. But, a proper buffer layer for carrier injection is needed in order to get a good performance. The buffer layer protects underlying organic materials against destructive particles during the electrode deposition and improves their charge transport efficiency by reducing the charge injection barrier. Hexaazatriphenylene-hexacarbonitrile (HAT-CN), a discoid organic molecule, has been used successfully in tandem OLEDs due to its high workfunction more than 6.1 eV. And it has the lowest unoccupied molecular orbital (LUMO) level near to Fermi level. So it plays like a strong electron acceptor. In this experiment, we measured energy level alignment and hole current density on inverted OLED structures for hole injection. The normal film structure of Al/NPB/ITO showed bad characteristics while the HAT-CN insertion between Al and NPB greatly improved hole current density. The behavior can be explained by charge generation at the HAT-CN/NPB interface and gap state formation at Al/HAT-CN interface, respectively. This result indicates that a proper organic buffer layer can be successfully utilized to enhance hole injection efficiency even with low work function Al anode.

  • PDF

유기발광소자(Organic Light Emitting Diode)의 다층박막에 대한 전기적 특성 연구 (A Study on Electric Characteristics of Multi-layer by Light Organic Emitting Diode)

  • 이정호
    • 한국산업정보학회논문지
    • /
    • 제10권2호
    • /
    • pp.76-81
    • /
    • 2005
  • 본 연구에서는 차세대 디스플레이 소자로 각광을 받고 있는 유기발광 소자의 전기적인 특성을 해석적으로 접근하였다. 기본적인 OLED의 동작 메카니즘은 일함수(work function)가 낮은 음극(cathode) 전극으로부터 주입된 전자(electron)와 양극(anode) 전극으로 주입된 정공(hole)이 수송층을 지나 발광층으로 유입되어 여기상태(exciton state)를 거치며 재결합함으로써 발광되는 것으로 알려져 있다. 따라서 음극과 양극을 통해 들어오는 수송자(carrier)들이 원활한 전자-정공 쌍(electron - hole pair)을 이루기 위해 다층 박막 구조로 소자를 제작하여 높은 에너지 장벽을 완만하게 만들고 또한 박막의 두께를 조절하여 정공과 전자의 이동도 밸런스(balance)를 맞추어 수송자-전자와 정공-들이 수송층(CTL : carrier transport layer)을 통해 발광층(EML : emitting material layer)으로 주입을 용이하게 만든다 따라서 본 논문에서는 유기 발광소자의 최적의 발광특성을 얻기 위해서는 수치 해석을 통한 가장 높은 발광 효율을 가지게되는 박막의 두께를 예측하고 예측된 유기발광소자의 수치해석 값이 실제 제작된 소자의 특성 값과 일치하여 타당성이 있음을 증명하고자 한다.

  • PDF

N형 고분자 반도체의 전하주입 특성 향상을 통한 저전압 유기전계효과트랜지스터 특성 연구 (Low-Voltage Operating N-type Organic Field-Effect Transistors by Charge Injection Engineering of Polymer Semiconductors and Bi-Layered Gate Dielectrics)

  • 문지훈;백강준
    • 한국전기전자재료학회논문지
    • /
    • 제30권10호
    • /
    • pp.665-671
    • /
    • 2017
  • Herein, we report the fabrication of low-voltage N-type organic field-effect transistors by using high capacitance fluorinated polymer gate dielectrics such as P(VDF-TrFE), P(VDF-TrFE-CTFE), and P(VDF-TrFE-CFE). Electron-withdrawing functional groups in PVDF-based polymers typically cause the depletion of negative charge carriers and a high contact resistance in N-channel organic semiconductors. Therefore, we incorporated intermediate layers of a low-k polymerto prevent the formation of a direct interface between PVDF-based gate insulators and the semiconducting active layer. Consequently, electron depletion is inhibited, and the high charge resistance between the semiconductor and source/drain electrodes is remarkably improved by the in corporation of solution-processed charge injection layers.

Yellow Light-Emitting Poly(p-phenylenevinylene) Derivative with Balanced Charge Injection Property

  • Kim, Joo-Hyun;Lee, Hoo-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권5호
    • /
    • pp.652-656
    • /
    • 2004
  • A new luminescent polymer, poly{1,4-phenylene-1,2-ethenediyl-2'-[2"-(4'"-octyloxyphenyl)-(5"-yl)-1",3",4"-oxadiazole]-1,4-phenylene-1,2-ethenediyl-2,5-bis-dodecyloxy-1,4-phenylene-1,2-ethenediyl} (Oxd-PPV), was synthesized by the Heck coupling reaction. Electron withdrawing pendant, conjugated 1,3,4-oxadiazole (Oxd), is on the vinylene unit. The band gap of the polymer figured out from the UV-visible spectrum was 2.23 eV and the polymer film shows bright yellow emission maximum at 552 nm. The electroluminescence (EL) maximum of double layer structured device (ITO/PEDOT:PSS/Oxd-PPV/Al) appeared at 553 nm. Relative PL quantum yield of Oxd-PPV film is 3.6 times higher than that of MEH-PPV film. The HOMO and LUMO energy levels of Oxd-PPV figured out from the cyclic voltammogram and the UV-visible spectrum are -5.32 and -3.09 eV, respectively, so that more balanced hole and electron injection efficiency can be expected compared to MEH-PPV. A double layer EL of Oxd-PPV has an maximum efficiency of 0.15 cd/A and maximum brightness of 464 cd/$m^2$.

Poly(3-hexylthiophene) 발광소자의 금속전극 의존성 (Dependance on Metal Electrode of Poly(3-hexylthiophene) EL Device)

  • 서부완;김주승;김형곤;이경섭;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.162-165
    • /
    • 2000
  • To investigate the effect of metal electrode in electroluminescent[EL] devices, we fabricated EL devices of ITO/P3HT/Al, ITO/P3HT/LiF/Al and ITO/P3HT/Mg:In structure. In current-voltage-light power characteristics, turn-on voltage of EL devices using LiF insulating layer and Mg:In(2.8V) metal electrode is lower than EL device using Al(4.2V). Besides the external quantum efficiency is improved also. The reason is related to carrier mobility and carrier injection, which would affect the hole-electron balance. In the device with Al electrode, holes injected from indium-tin-oxide[ITO] to poly(3-hexylthiophene)[P3HT] might reach the Al electrode without interacting with injected electrons, because the electron injection efficiency was very low for this electrode. Besides oxidation of the Al electrode is likely due to holes reaching the cathode without meeting injected electrons. Another possible reason for the higher EL efficiency may be the insulating layer playing the role of a tunneling barrier for holes to the Al electrode. In all EL devices, the orange-red light was clearly visible in a dark room. Maximum peak wavelength of EL spectrum emitted at 640nm in accordance with photon energy 1.9eV

  • PDF