• 제목/요약/키워드: electron impact

검색결과 343건 처리시간 0.036초

EI-GC/MS/MS를 이용한 니트로사민류의 수질분석 (Determination of N-nitrosamines in Water by Gas Chromatography Coupled with Electron Impact Ionization Tandem Mass Spectrometry)

  • 이기창;박재형;이원태
    • 대한환경공학회지
    • /
    • 제36권11호
    • /
    • pp.764-770
    • /
    • 2014
  • 본 연구는 electron impact-gas chromatography/mass spectrometer (EI-GC/MS)를 이용하여 N-nitrosamines 분석하는 방법의 분리성, 정성 및 정량적 유효성을 평가하였다. 극미량의 검출을 위해 시료전처리는 자동고상추출과 질소농축과정을 거쳐 수행하였다. 표준시료를 전처리 없이 EI-GC/MS (SIM)와 EI-GC/MS/MS (MRM)를 이용하여 직접 분석한 결과, 두 방법 모두 유사한 감응도를 보였다. 반면, 전처리한 표준시료를 EI-GC/MS로 분석한 경우 불순물 피크에 의한 간섭영향에 의해 낮은 ng/L 수준의 정량은 어려운 것으로 나타났다. 8종의 N-nitrosamines에 대한 EI-GC/MS/MS 분석결과, 방법검출한계 및 정량한계는 각각 0.76~2.09 ng/L, 2.41~6.65 ng/L 수준으로 기존 분석방법에 비하여 낮게 나타났다. 첨가농도 10, 20, 100 ng/L에 대한 실험에서 정밀도(1.2~13.6%)와 정확도(80.4~121.8%) 모두 만족하였으며, 검량선의 직선성에 대한 결정계수($R^2$)도 0.999 이상이었다. 환경시료에 대한 대체표준물질(NDPA-$d_{14}$)의 회수율도 86.2~122.3%을 나타내어, 본 연구에서 평가된 방법으로 N-nitrosamines의 정밀분석이 가능함을 검증하였다.

오스테나이트계 304 스테인리스강의 케비테이션 기포 및 고체 입자 동시 충격 손상의 정량적 고찰 (Quantitative Analysis on the Damage of the Austenitic Stainless Steel under the Simultaneous Cavitation Bubble and Solid Particle Collapses)

  • 홍성모;박진주;이민구;이창규
    • 대한금속재료학회지
    • /
    • 제48권10호
    • /
    • pp.893-900
    • /
    • 2010
  • In the present work, the impact loads and their effects on the surface damage under the simultaneous cavitation bubble and solid particle collapses in the sea water have been quantitatively investigated for the austenitic 304 stainless steel by using a vibratory cavitation test device. To do this, angular $SiO_2$ solid particles with an average size of $150{\mu}m$ were dispersed into the test liquid, and the measured impact amplitudes were converted into the impact loads by a steel ball drop test. The maximum impact load was determined to be 28.2 N in the absence of solid particles, but increased to 33.7 N in the presence of solid particles. In addition, the critical impact loads, $L_{crit}$, required to generate pits with sizes greater than $3{\mu}m$ were measured to be 19.6 N and 16.6 N, respectively, for the cavitation bubble collapse and solid particle collapse. As a result of the cavitation erosion test, the incubation time and erosion rate were 1.2 times lower and 1.5 times higher, respectively, by a solid particle collapse compared to those only by the cavitation bubble collapse, indicating a drastic decrease in a resistance to cavitation erosion by the solid particle collapse.

Effect of Calcium Carbonate Nanoparticle on the Toughening Mechanisms of Polypropylene Nanocomposite

  • Weon, Jong-Il;Choi, Kil-Yeong
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.290-290
    • /
    • 2006
  • The toughening mechanisms of polypropylene (PP) containing 9.2 vol % of calcium carbonate ($CaCO_{3}$) nanoparticles were investigated using optical microscopy and transmission electron microscopy. Double-notch four-point bending (DN-4PB) Charpy impact specimens were utilized to study the fracture mechanism(s) responsible for the observed toughening effect. A detailed investigation reveals that the $CaCO_{3}$ nanoparticles act as stress concentrators to initiate massive crazes, followed by shear banding in PP matrix. These toughening mechanisms are responsible for the observed improved impact strength.

  • PDF

A Technique to Quantify the Extent of Postmortem Degradation of Meat Ultrastructure

  • Hwang, I.H.;Thompson, J.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권1호
    • /
    • pp.111-116
    • /
    • 2002
  • This study investigated quantitative changes in the spaces between and within myofibrils and the impact of high and low voltage electrical stimulation on muscle ultrastructure as seen in electron micrographs. In addition, the relationships of these spaces and the impact to meat tenderness were investigated. The degradation of myofibrils during aging appeared to be localized across the muscle fibre. Structural deterioration of muscle fibres was evident 1 day post-mortem, involving the weakening in the lateral integrity of the myofibrils and Z-disc regions. Meat tenderisation, as shown by objective measurements, coincided with these increases in degradation, as assessed by the sum of the gaps between and within myofibrils. The results showed that the total size of gaps between and within myofibrils can be used as an indicator of meat tenderization during aging, but that ultrastructural alteration in electrically stimulated muscle had little relationship with meat tenderness.

Magnetic field imperfections of in-vacuum undulator on PLS-II beam dynamics

  • Chunjarean, Somjai;Hwan, Shin-Seung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.359-359
    • /
    • 2011
  • Many research applications in basic sciences and biology such as protein crystallography require hard x-rays in the range of 3-20 keV with high brightness. A medium energy storage ring as PLS-II with a beam energy of 3 GeV can meet such high photon energies. In-vacuum undulators (IVU) with a period length of 20 mm and a peak field of 0.97 T are used in the PLS-II ring to produce such X-rays in the fundamental or higher harmonics. Due to the many poles and high fields, insertion devices like wigglers and undulators have a significant impact on the stability of the electron beam with potential degradation of beam quality and life time. Therefore, nonlinear fields must be determined by measurement and evaluated as to their impact on beam stability. Specifically, transverse field roll-off can be a serious detriment to injection in top-up mode and must be corrected. We use magnetic field measurement data to evaluated beam stability by tracking particles using an explicit symplectic integrator in both, transverse and longitudinal planes.

  • PDF

900MPa급 TWIP강의 마찰교반용접(FSW) (Friction Stir Welding of 900MPa Grade TWIP Steel)

  • 이광진;김상혁;권의표;손규송
    • Journal of Welding and Joining
    • /
    • 제32권2호
    • /
    • pp.9-13
    • /
    • 2014
  • Friction stir welding (FSW) was successfully performed about 900MPa grade Twinning Induced Plastisity (TWIP) steel. A PCBN tool with convex-type shoulder was applied. Optimal process conditions were deduced. Microstructure and mechanical properties such as hardness, tensile strength and impact absorbed energy were observed and evaluated, respectively. An optical microscope (OM) and a field emission scanning electron microscope (FE-SEM) was selected for observing the grain structure.

Si기반 n-MOSFET의 임팩트이온화모델 분석 (Analysis of Impact ionization models for Si n-MOSFET)

  • 고석웅;김재홍;임규성;;정학기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2002년도 춘계종합학술대회
    • /
    • pp.268-270
    • /
    • 2002
  • 반도체소자의 전자전송특성을 해석하기 위하여 임팩트이온화현상은 매우 중요하다. 임팩트이온화는 전자-정공쌍들의 생성과정이므로 소자에 인가되는 전압이나 온도에 따라 소자의 특성이 변화될 수 있다. 본 연구에서는 Constant Voltage 스켈링이론을 적용하여 게이트 길이를 50nm까지 스케일 다운하였으며 TCAD시뮬레이터를 이용하여 세 가지 모델-Van Overstraeten, Okuto, Ours-에 대하여 임팩트이온화와 breakdown등을 비교 분석하였다.

  • PDF

나노구조 실리콘 소자의 임팩트이온화 모델 분석 (Analysis of Impact ionization Model for Nano structure Silicon device)

  • 고석웅;임규성;정학기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2001년도 추계종합학술대회
    • /
    • pp.656-659
    • /
    • 2001
  • 최근 반도체 기술의 발달로 소자의 크기가 줄어들면서 높은 에너지를 갖는 핫 캐리어 전송 해석이 매우 중요하게 되었다. Auger 과정과는 반대인 임팩트이온화현상은 핫 캐리어에 의한 산란에 의하여 전자-정공쌍을 생성하는 과정으로 소자의 전송특성 해석을 위한 시뮬레이션에 정확한 임팩트 이온화모델이 필수적이다. 본 연구에서는 Monte Carlo 시뮬레이터를 이용한 임팩트이온화 모델과 TCAD 그리고 Micro-Tec을 이용한 임팩트이온화 모델을 분석하여 보다 정확한 임팩트이온화 모델을 제시하고자 한다.

  • PDF

Recycled Polypropylene (PP) - Wood Saw Dust (WSD) Composites : The Effect of Acetylation on Mechanical and Water Absorption Properties

  • Khalil, H.P.S.A.;Shahnaz, S.B. Sharifah;Ratnam, M.M.;Issam, A.M;Ahmad, Faiz;Fuaad, N.A Nik
    • Journal of the Korean Wood Science and Technology
    • /
    • 제34권2호
    • /
    • pp.10-21
    • /
    • 2006
  • Recycled polypropylene (RPP) - Wood Saw Dust (WSD) composites with and without acetylation of filler were produced at different filler loading (15%, 25%, 35% and 45% w/w) and filler size (300, 212 and $100{\mu}m$). The RPP-WSD was compounded using a Haake Rheodrive 500 twin screw compounder at $190^{\circ}C$ at 8 MPa for 30 minutes. The mechanical properties and water absorption properties of modified and unmodified WSD-PP composites were investigated. Acetylation of WSD improved the mechanical and water absorption characteristic of composites. The decrease of filler size (300 to $100{\mu}m$) of the unmodified and acetylated WSD showed increase of tensile strength and impact properties. The composites exhibited higher tensile modulus properties as the filler loading increased (15% to 45%). However tensile strength, elongation at break and impact strength showed the opposite phenomenon. Water absorption increased as the mesh number and filler loading increased. With acetylation, lower moisture absorption was observed as compared to unmodified WSD. The failure mechanism from impact fracture of the filler-matrix interface with and without acetylation was analyzed using Scanning Electron Microscope (SEM).

Alloy Wheel용 저압 주조 A356-T6 합금의 기계적 특성 (Mechanical Properties of Low-Pressure Die Cast A356-T6 alloys for Automotive Wheels)

  • 유봉준;김정호;윤형석;어순철
    • 한국주조공학회지
    • /
    • 제34권1호
    • /
    • pp.6-13
    • /
    • 2014
  • The mechanical properties of low-pressure die cast (LPDC) A356-T6 automotive road wheels are evaluated and correlated with their corresponding microstructures. In this study, two types of alloy wheels processed using different LPDC gating system are investigated. The yield stress, tensile stress, and elongation values tested at room temperature are correlated with the secondary dendrite arm spacing (SDAS) with respect to the gating system, and are also compared with similar studies. The SDAS and precipitates are examined using optical microscopy, scanning electron microscopy (SEM) and energy-dispersive spectroscopy. The phase information is also investigated using X-ray diffraction. Charpy impact tests are also performed from $-100^{\circ}C$ to $200^{\circ}C$, and the fracture surfaces are examined using SEM. The impact energy is demonstrated to increase with increasing temperatures without exhibiting specific transition behaviors as in other nonferrous alloys. The fracture toughness is also evaluated using three point bend test with single-edged bend specimens. The obtained fracture toughness values are in good agreement with those in similar studies.