• Title/Summary/Keyword: electron cyclotron resonance

Search Result 125, Processing Time 0.034 seconds

The Study on Characteristics of a-C:H Films Deposited by ECR Plasma (전자회전공명 플라즈마를 이용한 a-C:H 박막의 특성 연구)

  • 김인수;장익훈;손영호
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2001.05a
    • /
    • pp.224-231
    • /
    • 2001
  • Hydrogenated amorphous carbon films were deposited by ERC-PECVD with deposition conditions, such as ECR power, gas composition of methane and hydrogen, deposition time, and substrate bias voltage. The characteristics of the film were analyzed using the AES, ERDA, FTIR. Raman spectroscopy and micro hardness tester. From the results of AES and ERDA, the elements in the deposited film were confirmed as carbon and hydrogen atoms. FTIR spectroscopy analysis shows that the atomic bonding structure of a-C:H film consisted of sp³and sp²bonding, most of which is composed of sp³bonding. The structure of the a-C:H films changed from CH₃bonding to CH₂or CH bonding as deposition time increased. We also found that the amount of dehydrogenation in a-C:H films was increased as the bias voltage increased. Raman scattering analysis shows that integrated intensity ratio (I/sub D//I/sub G/) of the D and G peak was increased as the substrate bias voltage increased, and films hardness was increased.

  • PDF

Improvement in the bias stability of zinc oxide thin-film transistors using an $O_2$ plasma-treated silicon nitride insulator

  • Kim, Ung-Seon;Mun, Yeon-Geon;Gwon, Tae-Seok;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.180-180
    • /
    • 2010
  • Thin film transistors (TFTs) based on oxide semiconductors have emerged as a promising technology, particularly for active-matrix TFT-based backplanes. Currently, an amorphous oxide semiconductor, such as InGaZnO, has been adopted as the channel layer due to its higher electron mobility. However, accurate and repeatable control of this complex material in mass production is not easy. Therefore, simpler polycrystalline materials, such as ZnO and $SnO_2$, remain possible candidates as the channel layer. Inparticular, ZnO-based TFTs have attracted considerable attention, because of their superior properties that include wide bandgap (3.37eV), transparency, and high field effect mobility when compared with conventional amorphous silicon and polycrystalline silicon TFTs. There are some technical challenges to overcome to achieve manufacturability of ZnO-based TFTs. One of the problems, the stability of ZnO-based TFTs, is as yet unsolved since ZnO-based TFTs usually contain defects in the ZnO channel layer and deep level defects in the channel/dielectric interface that cause problems in device operation. The quality of the interface between the channel and dielectric plays a crucial role in transistor performance, and several insulators have been reported that reduce the number of defects in the channel and the interfacial charge trap defects. Additionally, ZnO TFTs using a high quality interface fabricated by a two step atomic layer deposition (ALD) process showed improvement in device performance In this study, we report the fabrication of high performance ZnO TFTs with a $Si_3N_4$ gate insulator treated using plasma. The interface treatment using electron cyclotron resonance (ECR) $O_2$ plasma improves the interface quality by lowering the interface trap density. This process can be easily adapted for industrial applications because the device structure and fabrication process in this paper are compatible with those of a-Si TFTs.

  • PDF

Characteristics of Fluorine-Doped Tin Oxide Film Coated on SUS 316 Bipolar Plates for PEMFCs (ECR-MOCVD를 이용하여 연료 전지 분리판에 코팅된 FTO막의 특성 연구)

  • Park, Ji-Hun;Hudaya, C.;Jeon, Bup-Ju;Byun, Dong-Jin;Lee, Joong-Kee
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.3
    • /
    • pp.283-291
    • /
    • 2011
  • Polymer electrolyte membrane fuel cells (PEMFCs) use the bipolar plate of various materials between electrolyte and contact electrode for the stable hydrogen ion exchange activation. The bipolar plate of various materials has representatively graphite and stainless steel. Specially, stainless steels have advantage for low cost and high product rate. In this study, SUS 316 was effectively coated with 600 nm thick F-doped tin oxide (SnOx:F) by electron cyclotron resonance-metal organic chemical vapor deposition and investigated in simulated fuel cell bipolar plates. The results showed that an F-doped tin oxide (SnOx:F) coating enhanced the corrosion resistance of the alloys in fuel cell bipolar plates, though the substrate steel has a significant influence on the behavior of the coating. Coating SUS 316 for fuel cell bipolar plates steel further improved the already excellent corrosion resistance of this material. After coating, the increased ICR values of the coated steels compared to those of the fresh steels. The SnOx:F coating seems to add an additional resistance to the native air-formed film on these stainless steels.

Effect of the Neutral Beam Energy on Low Temperature Silicon Oxide Thin Film Grown by Neutral Beam Assisted Chemical Vapor Deposition

  • So, Hyun-Wook;Lee, Dong-Hyeok;Jang, Jin-Nyoung;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.253-253
    • /
    • 2012
  • Low temperature SiOx film process has being required for both silicon and oxide (IGZO) based low temperature thin film transistor (TFT) for application of flexible display. In recent decades, from low density and high pressure such as capacitively coupled plasma (CCP) type plasma enhanced chemical vapor deposition (PECVD) to the high density plasma and low pressure such as inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) have been used to researching to obtain high quality silicon oxide (SiOx) thin film at low temperature. However, these plasma deposition devices have limitation of controllability of process condition because process parameters of plasma deposition such as RF power, working pressure and gas ratio influence each other on plasma conditions which non-leanly influence depositing thin film. In compared to these plasma deposition devices, neutral beam assisted chemical vapor deposition (NBaCVD) has advantage of independence of control parameters. The energy of neutral beam (NB) can be controlled independently of other process conditions. In this manner, we obtained NB dependent high crystallized intrinsic and doped silicon thin film at low temperature in our another papers. We examine the properties of the low temperature processed silicon oxide thin films which are fabricated by the NBaCVD. NBaCVD deposition system consists of the internal inductively coupled plasma (ICP) antenna and the reflector. Internal ICP antenna generates high density plasma and reflector generates NB by auger recombination of ions at the surface of metal reflector. During deposition of silicon oxide thin film by using the NBaCVD process with a tungsten reflector, the energetic Neutral Beam (NB) that controlled by the reflector bias believed to help surface reaction. Electrical and structural properties of the silicon oxide are changed by the reflector bias, effectively. We measured the breakdown field and structure property of the Si oxide thin film by analysis of I-V, C-V and FTIR measurement.

  • PDF

Preliminary Design of ECR Ion Thruster (ECR 방식 이온추력기 기본 설계)

  • Kim, Su-Kyum;Yu, Myoung-Jong;Choi, Seung-Woon
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.14-21
    • /
    • 2010
  • Ion thruster is a kind of electrostatic thruster that use electrostatic field in order to accelerate ionized propellant. Ion thruster have characteristics of small thrust but very high specific impulse among the electric thrusters. High specific impulse can reduce propellant consumption significantly. So, ion thruster have advantage for long time and long distance mission. Recently, plans for space exploration is increasing gradually not only at traditional forward countries for space like USA, Russia and Europe, but also other countries like Japan, China and India. Exploration for superior planets and asteroids the propellant ratio can go up to about 99% when chemical propulsion is used as a cruising thruster. Therefore, latest space exploration vehicles use the ion thruster as main thruster for del-V burn and use monopropellant thrusters for attitude control. In this paper, the development process of preliminary ECR ion thruster and the ECR discharge test results will be presented.

Optical properties of diamond-like carbon films deposited by ECR-PECVD method (ECR-PECVD 방법으로 증착한 Diamond-Like carbon 박막의 광 특성)

  • Kim, Dae-Nyoun;Kim, Ki-Hong;Kim, Hye-Dong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.2
    • /
    • pp.291-299
    • /
    • 2004
  • DLC films were deposited using the ECR-PECVD method with the fixed deposition condition, such as ECR power, methane and hydrogen gas-flow rates and deposition time, for various substrate bias voltage. We have investigated the ion bombardment effect induced by the substrate bias voltage on films during the deposition of film. The characteristic of the films were analyzed using the FTIR, Raman, and UV/Vis spectroscopy analysis shows that the amount of dehydrogenation in films was increased with the increase of substrate bias voltage and films thickness was decreased. Raman scattering analysis shows that integrated intensity ratio(ID/IG) of the D and G peak was increased as the substrate bias voltage increased and films hardness was increased. Optical transmittances of DLC film were decreased with increasing deposition time and substrate bias voltage. From these results, it can be concluded that films deposited at this experimental have the enhanced characteristics of DLC because of the ion bombardment effect on films during the deposition of film.

  • PDF

Formation of a thin nitrided GaAs layer

  • Park, Y.J.;Kim, S.I.;Kim, E.K.;Han, I.K.;Min, S.K.;O'Keeffe, P.;Mutoh, H.;Hirose, S.;Hara, K.;Munekata, H.;Kukimoto, H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1996.06a
    • /
    • pp.40-41
    • /
    • 1996
  • Nitridation technique has been receiving much attention for the formation of a thin nitrided buffer layer on which high quality nitride films can be formedl. Particularly, gallium nitride (GaN) has been considered as a promising material for blue-and ultraviolet-emitting devices. It can also be used for in situ formed and stable passivation layers for selective growth of $GaAs_2$. In this work, formation of a thin nitrided layer is investigated. Nitrogen electron cyclotron resonance(ECR)-plasma is employed for the formation of thin nitrided layer. The plasma source used in this work is a compact ECR plasma gun3 which is specifically designed to enhance control, and to provide in-situ monitoring of plasma parameters during plasma-assisted processing. Microwave power of 100-200 W was used to excite the plasma which was emitted from an orifice of 25 rnm in diameter. The substrate were positioned 15 em away from the orifice of plasma source. Prior to nitridation is performed, the surface of n-type (001)GaAs was exposed to hydrogen plasma for 20 min at $300{\;}^{\circ}C$ in order to eliminate a native oxide formed on GaAs surface. Change from ring to streak in RHEED pattern can be obtained through the irradiation of hydrogen plasma, indicating a clean surface. Nitridation was carried out for 5-40 min at $RT-600{\;}^{\circ}C$ in a ECR plasma-assisted molecular beam epitaxy system. Typical chamber pressure was $7.5{\times}lO^{-4}$ Torr during the nitridations at $N_2$ flow rate of 10 seem.(omitted)mitted)

  • PDF

Comparison analysis of superconducting solenoid magnet systems for ECR ion source based on the evolution strategy optimization

  • Wei, Shaoqing;Lee, Sangjin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.2
    • /
    • pp.36-40
    • /
    • 2015
  • Electron cyclotron resonance (ECR) ion source is an essential component of heavy-ion accelerator. For a given design, the intensities of the highly charged ion beams extracted from the source can be increased by enlarging the physical volume of ECR zone [1]. Several models for ECR ion source were and will be constructed depending on their operating conditions [2-4]. In this paper three simulation models with 3, 4 and 6 solenoid system were built, but it's not considered anything else except the number of coils. Two groups of optimization analysis are presented, and the evolution strategy (ES) is adopted as an optimization tool which is a technique based on the ideas of mutation, adaptation and annealing [5]. In this research, the volume of ECR zone was calculated approximately, and optimized designs for ECR solenoid magnet system were presented. Firstly it is better to make the volume of ECR zone large to increase the intensity of ion beam under the specific confinement field conditions. At the same time the total volume of superconducting solenoids must be decreased to save material. By considering the volume of ECR zone and the total length of solenoids in each model with different number of coils, the 6 solenoid system represented the highest coil performance. By the way, a certain case, ECR zone volume itself can be essential than the cost. So the maximum ECR zone volume for each solenoid magnet system was calculated respectively with the same size of the plasma chamber and the total magnet space. By comparing the volume of ECR zone, the 6 solenoid system can be also made with the maximum ECR zone volume.

유도결합 $Cl_2/CHF_3, Cl_2/CH_4, Cl_2/Ar $플라즈마를 이용한 InGaN 건식 식각 반응 기구 연구

  • 이도행;김현수;염근영;이재원;김태일
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.249-249
    • /
    • 1999
  • GaN과 같은 III-nitride 반도체 관한 식각 기술의 연구는 blue-emitting laser diode(LD)를 위한 경면(mirror facet)의 형성뿐만아니라 새로운 display 용도의 light emitting diodes (LED), 고온에서 작동되는 광전소자 제조 등에도 그 중요성이 증대되고 있다. 최근에는 III-nitride 물질의 높은 식각속도와 미려하고 수직한 식각형상을 이루기 위하여 ECR(Electron Cyclotron Resonance)이나 ICP(Inductively Coupled Plasma)와 같은 고밀도 플라즈마 식각과 CAIBE(Chemically assisted ion beam etching)를 이용한 연구가 진행되고 있다. 현재 제조되어 지고 있는 LED 및 LD와 같은 광소자의 구조의 대부분은 p-GaN/AlGaN/InGaN(Q.W)/AlGaN/n-GaN 와 같은 여러 층의 형태로 이루어져 있다. 이중 InGaN는 광소자나 전자소자의 특성에 영향을 주는 가장 중요한 부분으로써 현재까지 보고된 식각연구는 undoped GaN에 대부분 집중되고 있고 이에 비해 소자 특성에 핵심을 이루는 InGaN의 식각특성에 관한 연구는 미흡한 상황이다. 본 연구에서는 고밀도 플라즈마원인 ICP 장비를 이용하여 InGaN를 식각하였고, 식각에는 Cl2/CH4, Cl2/Ar 플라즈마를 사용하였다. InGaN의 식각특성에 영향을 미치는 플라즈마의 특성을 관찰하기 위하여 quadrupole mass spectrometry(QMS)와 optical emission spectroscopy(PES)를 사용하였다. 기판 온도는 5$0^{\circ}C$, 공정 압력은 5,Torr에서 30mTorr로 변화시켰고 inductive power는 200~800watt, bias voltage는 0~-200voltage로 변화시켰으며 식각마스크로는 SiO2를 patterning 하여 사용하였다. n-GaN, p-GaN 층 이외에 광소자 제조시 필수적인 InGaN 층을 100% Cl2로 식각한 경우에 InGaN의 식각속도가 GaN에 비해 매우 낮은 식각속도를 보였다. Cl2 gas에 소량의 CH4나 Ar gas를 첨가하는 경우와 공정압력을 감소시키는 경우 식각속도는 증가하였고, Cl2/10%Ar 플라즈마에서 공정 압력을 감소시키는 경우 식각속도는 증가하였고, Cl2/10%CHF3 와 Cl2/10%Ar 플라즈마에서 공정압력을 15mTorr로 감소시키는 경우 InGaN과 GaNrks의 선택적인 식각이 가능하였다. InGaN의 식각속도는 Cl2/Ar 플라즈마의 이온에 의한 Cl2/CHF3(CH4) 플라즈마에서의 CHx radical 형성에 의하여 증가하는 것으로 사료되어 진다.

  • PDF

Influence of gate insulator treatment on Zinc Oxide thin film transistors.

  • Kim, Gyeong-Taek;Park, Jong-Wan;Mun, Yeon-Geon;Kim, Ung-Seon;Sin, Sae-Yeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.54.2-54.2
    • /
    • 2010
  • 최근까지는 주로 비정질 실리콘이 디스플레이의 채널층으로 상용화 되어왔다. 비정질 실리콘 기반의 박막 트랜지스터는 제작의 경제성 및 균일성을 가지고 있어서 널리 상용화되고 있다. 하지만 비정질 실리콘의 구조적인 문제인 낮은 전자 이동도(< $1\;cm^2/Vs$)로 인하여 디스플레이의 대면적화에 부적합하며, 광학적으로 불투명한 특성을 갖기 때문에 차세대 디스플레이의 응용에 불리한 점이 있다. 이런 문제점의 대안으로 현재 국내외 여러 연구 그룹에서 산화물 기반의 반도체를 박막 트랜지스터의 채널층으로 사용하려는 연구가 진행중이다. 산화물 기반의 반도체는 밴드갭이 넓어서 광학적으로 투명하고, 상온에서 증착이 가능하며, 비정질 실리콘에 비해 월등히 우수한 이동도를 가짐으로 디스플레이의 대면적화에 유리하다. 특히 Zinc Oxide의 경우, band gap이 3.4eV로써, transparent conductors, varistors, surface acoustic waves, gas sensors, piezoelectric transducers 그리고 UV detectors 등의 많은 응용에 쓰이고 있다. 또한, a-Si TFTs에 비해 ZnO-based TFTs의 경우 우수한 소자 성능과 신뢰성을 나타내며, 대면적 제조시 우수한 균일성 및 낮은 생산비용이 장점이다. 그러나 ZnO-baesd TFTs의 경우 일정한 bias 아래에서 threshold voltage가 이동하는 문제점이 displays의 소자로 적용하는데 매우 중요하고 문제점으로 여겨진다. 특히 gate insulator와 channel layer사이의 interface에서의 defect에 의한 charge trapping이 이러한 문제점들을 야기한다고 보고되어진다. 본 연구에서는 Zinc Oxide 기반의 박막 트랜지스터를 DC magnetron sputtering을 이용하여 상온에서 제작을 하였다. 또한, $Si_3N_4$ 기판 위에 electron cyclotron resonance (ECR) $O_2$ plasma 처리와 plasma-enhanced chemical vapor deposition (PECVD)를 통하여 $SiO_2$ 를 10nm 증착을 하여 interface의 개선을 시도하였다. 그리고 TFTs 소자의 출력 특성 및 전이 특성을 평가를 하였고, 소자의 field effect mobility의 값이 향상을 하였다. 또한 Temperature, Bias Temperature stability의 조건에서 안정성을 평가를 하였다. 이러한 interface treatment는 안정성의 향상을 시킴으로써 대면적 디스플레의 적용에 비정질 실리콘을 대체할 유력한 물질이라고 생각된다.

  • PDF