• Title/Summary/Keyword: electron beam method

Search Result 503, Processing Time 0.031 seconds

Fabrication and Characterization of a Fiber-Optic Radiation Sensor for High Energy Electron Beam Therapy (치료용 고에너지 전자선 계측을 위한 광섬유 방사선 센서의 제작 및 특성 분석)

  • Jang, Kyoung-Won;Cho, Dong-Hyun;Yoo, Wook-Jae;Lee, Bong-Soo;Yi, Jeong-Han;Tack, Gye-Rae;Cho, Hyo-Sung;Kim, Sin
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.332-336
    • /
    • 2006
  • In this study, we have fabricated a fiber-optic radiation sensor using an organic scintillator for high energy electron beam therapy. The intensities of scintillating light from a fiber-optic radiation sensor are measured with different field size, electron beam energy and monitor unit of a clinical linear accelerator. To obtain percent depth dose(PDD), the amount of scintillating light is measured at different depth of polymethylmethacrylate(PMMA) phantom. Also the intensity of Cerenkov light is measured and characterized as a function of incident angle of electron beam and a subtraction method is investigated using a background optical fiber to remove a Cerenkov light.

Real-time monitoring of ultra-high dose rate electron beams using bremsstrahlung photons

  • Hyun Kim;Dong Hyeok Jeong;Sang Koo Kang;Manwoo Lee;Heuijin Lim;Sang Jin Lee;Kyoung Won Jang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3417-3422
    • /
    • 2023
  • Recently, as the clinically positive biological effects of ultra-high dose rate (UHDR) radiation beams have been revealed, interest in flash radiation therapy has increased. Generally, FLASH preclinical experiments are performed using UHDR electron beams generated by linear accelerators. Real-time monitoring of UHDR beams is required to deliver the correct dose to a sample. However, it is difficult to use typical transmission-type ionization chambers for primary beam monitoring because there is no suitable electrometer capable of reading high pulsed currents, and collection efficiency is drastically reduced in pulsed radiation beams with ultra-high doses. In this study, a monitoring method using bremsstrahlung photons generated by irradiation devices and a water phantom was proposed. Charges collected in an ionization chamber located at the back of a water phantom were analyzed using the bremsstrahlung tail on electron depth dose curves obtained using radiochromic films. The dose conversion factor for converting a monitored charge into a delivered dose was determined analytically for the Advanced Markus® chamber and compared with experimentally determined values. It is anticipated that the method proposed in this study can be useful for monitoring sample doses in UHDR electron beam irradiation.

Dynamic Analysis of Bending-Torsion Coupled Beam Structures Using Exact Dynamic Elements

  • Hong, Seong-Wook;Kang, Byung-Sik;Park, Joong-Youn
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.1
    • /
    • pp.15-22
    • /
    • 2003
  • Beams are often subject to bending-torsion coupled vibration due to mass coupling and/or stiffness coupling. This paper proposes a dynamic analysis method using the exact dynamic element for bending-torsion coupled vibration of general plane beam structures with joints. The exact dynamic element matrix for a bending-torsion coupled beam is derived, and the detailed procedure of using the exact dynamic element matrix is also presented. Three examples are provided for validating and illustrating the proposed method. The numerical study proves the proposed method to be useful for dynamic analysis of bending-torsion coupled beam structures with joints.

Effects of Acceleration and Deceleration Parameters on the Machining Error for Large Area Laser Processing (대면적 레이저 가공을 위한 가감속 파라미터가 가공오차에 미치는 영향)

  • Lee, Jae Hoon;Yoon, Kwang Ho;Kim, Kyung Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.8
    • /
    • pp.721-728
    • /
    • 2014
  • In this paper, it is proposed a method of optimizing path parameters for large-area laser processing. On-the-fly system is necessary for large-area laser processing of uniform quality. It is developed a MOTF(Marking On-The-Fly) board for synchronizing the stage and scanner. And it is introduced the change of the error due to the change of parameters and algorithm for large-area laser processing. This algorithm automatically generates stage path and a velocity profile using acceleration and deceleration parameters. Since this method doesn't use a G-code, even if without expert knowledge, it has an advantage that can be accessed easily. Angle of one of the square of $350{\times}350mm$ was changed from $50^{\circ}$ to $80^{\circ}$ and analyzed the error corresponding to the value of Ta. It is calculated the value of Ta of the best with a precision of 20um through measurement of accuracy according to the Ta of each angle near the edge.

Manufacture of an Ultra-Sharp Tungsten Electrode for Field-Emission Electron Beam and Its Beam Characteristics (멀티채널 방식에 의한 초미세 바늘 전극의 제작 및 빔 특성)

  • 임연찬;현정우;김성수;박철우;이종항;강승언
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.508-512
    • /
    • 2004
  • An ultra-sharp tungsten electrode for field emission was manufactured by using an electrochemical etching method, and its beam characteristics were investigated. KOH and NaOH were the electrolytes used in this research, and the taper length of the tip varied form 150 $\mu\textrm{m}$ to 250 $\mu\textrm{m}$ according to the applied voltage and the concentration of the electrolyte. The electron-beam stability was measured to be within 5% for a total emission current of 5 ${\mu}\textrm{A}$ during 4 hours of operation, and the Ignition voltages were found to be ∼300 V. The tip radius was experimentally found to be 250${\AA}$ from a linear fitting of Fowler-Nordheim plots, which was in remarkably good agreement with that of the image size from scanning ion-microscopy.

  • PDF

A Study on Dobe Distribution at the Junction of $^{60}CO\;\gamma-Ray$ and Elecron Beam in Postoperative Radiotherapy of Breast Cancer (유암수술후 방사선치료시 $^{60}Co\;\gamma$선과 전자선 조사야 접합부 선량분포에 관한 연구)

  • Kang, Wee-Saing;Huh, Seung-Jae;Ha, Sung-Whan
    • Radiation Oncology Journal
    • /
    • v.2 no.1
    • /
    • pp.149-153
    • /
    • 1984
  • Postoperative radiotherapy of breast cancer makes it possible to reduce loco-regional recurrence of breast cancer. The treatment technique, which can reduce the low-dose region at the junction and lung, is required. To produce proper dose distribution of internal mammary chain and chest wall, authors tried to find the method to expose $^{60}Co\;\gamma-ray$ on internal mammary region and 7MeV electron on chest wall. Exposure time of $^{60}Co\;\gamma$ and monitor unit of 9MeV were selected so that dose of $^{60}Co$ at 4cm depth was the same as that of 7Mev electron at $80\%$ dose depth. The position and direction of electron beam were changed for $^{60}Co$ beam: $0^{\circ},\;5^{\circ}$ for 0cm seperation; $0^{\circ},\;5^{\circ},\;10^{\circ}$ for 0.5cm seperation; $5^{\circ},\;10^{\circ},\;15^{\circ}$ for 1cm seperation. The results are as followings. 1. When the seperation of two fields was increased, dose on the axis of $^{60}Co$ beam was increased and dose at the junction region decreased while the volume of lung to be exposed to high dose and hot spot size were irregularly changed. 2. The dose distribution in the target volume of internal mammary and chest wall was most ideal when the seperation of two fields was $0\~0.5cm$ and the direction of electron beam was parallel to $^{60}Co$ beam.

  • PDF

Polymerization of HEMA by Electron beam Irradiation and Fabrication of Soft contact lens (전자빔조사에 의한 HEMA의 중합과 소프트콘택트렌즈 제조)

  • Hwang, Kwang-Ha;Shin, Joong-Hyeok;Sung, Yu-Jin;Jeong, Keun-Seung;Jun, Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.2
    • /
    • pp.135-141
    • /
    • 2012
  • Purpose: Polymerization of HEMA(2-hydroxyethyl methacrylate) which can be used in the soft contact lens has been performed by using electron beam(EB) irradiation, and examined the best condition for the polymerization. Comparing the physical properties of the contact lenses to the one fabricated by thermal polymerization method, we check the use possibility of the EB irradiation to the fabrication of the soft contact lens. Methods: We investigated the degree of polymerization of the HEMA according to the composition of the monomer, the additive ratio and the dose of electron beam (0~120 kGy). The degree of polymerization was measured depending on the EB dose to research the best synthetic condition under the EB irradiation. The physical properties of the contact lens such as water content(%), oxygen transmissibility(Dk/t) and optical transmittance were analysed by using the FT-IR results with comparing the two different polymerization method (thermal and electron beam polymerization) with same additive ratio. Results: When the dose of electron beam was above 100 kGy, the degree of polymerization of HEMA was above 99% with regardless using cross-linker and initiator. The water content of the lens fabricated by EB method showed 10% higher than the one by the thermal method which was 40%. The lens fabricated by EB method also showed higher oxygen transmissibility(Dk/t) as same with the water content, and showed twice higher value in the lens fabricated by pure HEMA. According to the FT-IR results, hydrophilic property of the lens fabricated by EB method was increased due to increasing the intermolecular hydrogen bonding. It showed above 90% optical transmittance in the visible range of wavelength on the contact lenses fabricated by the both of two different polymerization method. Conclusions: The polymerization of HEMA without cross-linker and initiator was successful above 100 kGy of EB irradiation. Moreover the lens fabricated from the polymer synthesized by pure HEMA with 100 kGy of EB showed the highest water content and oxygen transmissibility. Therefore EB irradiation is another possible method to synthesize the polymer which can be used for the soft contact lens.

Measurement of electron temperature and density using Stark broadening of the coaxial focused plasma for extreme ultraviolet (EUV) lithography

  • Lee, Sung-Hee;Hong, Young-June;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.475-475
    • /
    • 2010
  • We have generated Ar plasma in dense plasma focus device with coaxial electrodes for extreme ultraviolet (EUV) lithography and investigated an emitted visible light for electro-optical plasma diagnostics. We have applied an input voltage 4.5 kV to the capacitor bank of 1.53 uF and the diode chamber has been filled with Ar gas of pressure 8 mTorr. The inner surface of the cylindrical cathode has been attatched by an acetal insulator. Also, the anode made of tin metal. If we assumed that the focused plasma regions satisfy the local thermodynamic equilibrium (LTE) conditions, the electron temperature and density of the coaxial plasma focus could be obtained by Stark broadening of optical emission spectroscopy (OES). The Lorentzian profile for emission lines of Ar I of 426.629 nm and Ar II of 487.99 nm were measured with a visible monochromator. And the electron density has been estimated by FWHM (Full Width Half Maximum) of its profile. To find the exact value of FWHM, we observed the instrument line broadening of the monochromator with a Hg-Ar reference lamp. The electron temperature has been calculated using the two relative electron density ratios of the Stark profiles. In case of electron density, it has been observed by the Stark broadening method. This experiment result shows the temporal behavior of the electron temperature and density characteristics for the focused plasma. The EUV emission signal whose wavelength is about 6 ~ 16 nm has been detected by using a photo-detector (AXUV-100 Zr/C, IRD). The result compared the electron temperature and density with the temporal EUV signal. The electron density and temperature were observed to be $10^{16}\;cm^{-3}$ and 20 ~ 30 eV, respectively.

  • PDF

A study of the Electron Beam Irradiator for Core-loss reduction of Grain-oriented silicon Steel

  • Kim Min;Yoon Jeong-Phil;Lee Gi-Je;Cha In-Su;Cho Sung-Oh;Lee Byeong-Cheol;Jeong Young-Uk;Yoo Jae-Gwon;Lee Jong-Min
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.93-97
    • /
    • 2001
  • A new compact, low-energy electron beam irradiator has been developed. The core-loss of silicon steels can be reduced by magnetic-domain refinement method. The irradiator was developed for the application of core-loss reduction using the method. The beam energy of the irradiator can be varied from 35 to 80 keV and the maximum current is 3mA. The irradiation area is designed to be $30\times30mm2$ now and will be upgraded to $30\times150mm2$ using a scanning magnet and scanning cone. The electron beam generated from 3 mm diameter LaB6 is extracted to the air for the irradiation of the silicon steels in the air. A special irradiation port was developed for this low-energy irradiator. A havar foil with $4.08{\mu}m$ thickness were used for the window and a cold air-cooling system keeps the foil structure by removing heat at the window. The irradiator system and its operation characteristics will be discussed.

  • PDF

Change of Sprouting-related Enzymes Activities and Food Quality Characteristics of Sweetpotato Root (Ipomea batatas Lam.) by Electron Beam Irradiation (전자빔 조사에 의한 고구마의 발아관련 효소의 활성과 식품특성 변화)

  • Lim, Sung Jin;Song, Mi Seon;Lee, Gyeong Ae;Cho, Jae-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.4
    • /
    • pp.267-272
    • /
    • 2012
  • We investigated that electron beam irradiation is the effective method to control the sprouting of sweetpotato roots without changing of food quality characteristics. In 12 and $25^{\circ}C$ storage after electron beam irradiation, all control samples were sprouted from 6 and 4 weeks after storage, respectively. The sprouting rate of control increased with time and the rate reached to 11.2-12.4 and 70.5-74.2% at 8 weeks after 12 and $25^{\circ}C$ storage. Also, the sprouting of middle and below positioning sweetpotato roots at 12 and $25^{\circ}C$ storage after irradiation reached to 8.6-11.3 and 42.7-48.7% after a storage period of 8 weeks, respectively. However, the sprouting of all sweetpotato roots stored at $4^{\circ}C$ and upper (0-7 cm) positioning samples of box stored at 12 and $25^{\circ}C$ with electron beam was completely inhibited due to increase peroxidase and indole acetic acid (IAA) oxidase activity. Also, all samples with electron beam such as hardness, pH, sugar content, weight loss, and vitamin C and dacarotene content did not differ from that of the control. Therefore, if electron beam will be irradiated to sweetpotato roots above 0.1 kGy before packing, it will effectively inhibit their sprouting stored at $25^{\circ}C$ without the change of food quality characteristics.