• Title/Summary/Keyword: electron acceptors

Search Result 89, Processing Time 0.025 seconds

Use of Nitrate and Ferric Ion as Electron Acceptors in Cathodes to Improve Current Generation in Single-cathode and Dual-cathode Microbial Fuel Cells (Single-cathode와 Dual-cathode로 구성된 미생물연료전지에서 전류발생 향상을 위한 전자수용체로서의 Nitrate와 Ferric ion의 이용)

  • Jang, Jae Kyung;Ryou, Young Sun;Kim, Jong Goo;Kang, Youn Koo;Lee, Eun Young
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.414-418
    • /
    • 2012
  • The quantity of research on microbial fuel cells has been rapidly increasing. Microbial fuel cells are unique in their ability to utilize microorganisms and to generate electricity from sewage, pig excrement, and other wastewaters which include organic matter. This system can directly produce electrical energy without an inefficient energy conversion step. However, with MFCs maximum power production is limited by several factors such as activation losses, ohmic losses, and mass transfer losses in cathodes. Therefore, electron acceptors such as nitrate and ferric ion in the cathodes were utilized to improve the cathode reaction rate because the cathode reaction is very important for electricity production. When 100 mM nitrate as an electron acceptor was fed into cathodes, the current in single-cathode and dual-cathode MFCs was noted as $3.24{\pm}0.06$ mA and $4.41{\pm}0.08$ mA, respectively. These values were similar to when air-saturated water was fed into the cathodes. One hundred mM nitrate as an electron acceptor in the cathode compartments did not affect an increase in current generation. However, when ferric ion was used as an electron acceptor the current increased by $6.90{\pm}0.36$ mA and $6.67{\pm}0.33$ mA, in the single-cathode and dual-cathode microbial fuel cells, respectively. These values, in single-cathode and dual-cathode microbial fuel cells, represent an increase of 67.1% and 17.6%, respectively. Furthermore, when supplied with ferric ion without air, the current was higher than that of only air-saturated water. In this study, we attempted to reveal an inexpensive and readily available electron acceptor which can replace platinum in cathodes to improve current generation by increasing the cathode reaction rate.

The Effect of Fixed Oxide Charge on Breakdown Voltage of p+/n Junction in the Power Semiconductor Devices (전력용 반도체 소자의 설계 제작에 있어서 Fixed oxide charge가 p+/n 접합의 항복전압에 미치는 영향)

  • Yi, C.W.;Sung, M.Y.;Choi, Y.I.;Kim, C.K.;Suh, K.D.
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.155-158
    • /
    • 1988
  • The fabrication of devices using plans technology could lend to n serious degradation in the breakdown voltage as a result of high electric field at the edges. An elegant approach to reducing the electric field at the edge is by using field limiting ring. The presence of surface charge has n strong influrence on the depletion layer spreading at the surface region because this charge complements the charge due to the ionized acceptors inside the depletion layer. Surface charge of either polarity can lower the breakdown voltage because it affects the distribution of electric field st the edges. In this paper we discuss the influrences of fixed oxide charge on the breakdown voltage of the p+/n junction with field limiting ring(or without field limiting ring).

  • PDF

The Aerobic Nature of Arcobacter nitrofigilis (Arcobacter nitrofigilis의 호기적 특성)

  • Han, Yeong-Hwan
    • Korean Journal of Microbiology
    • /
    • v.32 no.1
    • /
    • pp.7-11
    • /
    • 1994
  • The free-livein nitrogen fixing bacterium, Arcobacter nitrofigilis which has been known to be a microaerophile, exhibited aerobic growth in brucella broth. In a level of oxygen equivalent to an air atmosphere (21% $O_2$), the maximum cell growth was observed in brucella broth. Low level of cell growth occurred in a level of low oxygen equivalent to lower than 2%, unless any other terminal electron acceptors other than oxygen were wupplied in brucella broth. Membrane-bound cytochrome b and c, and soluble cytochrome c were found. The growth in an aerobic atmosphere, little growth at low oxygen level, and occurrence of cytochrome c mean that this species is an aerobe and obtains energy using energy-yielding respiration.

  • PDF

Oxygen Release from Peroxide Injected into Soil/Sediment (토양/퇴적물에 주입한 과산화물에서 발생되는 산소 배출)

  • Han, Kyungmin;Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.156-159
    • /
    • 2010
  • Peroxide is used frequently to provide electron acceptors to aerobes for the purpose of in situ bioremediation of contaminated soil/sediment. In this study, oxygen release rate of peroxides and factors affecting on dissolution and diffusion of oxygen into pore water were evaluated. Peroxides studied in this study were magnesium peroxide ($MgO_2$), calcium peroxide ($CaO_2$), and sodium percarbonate ($Na_2CO_3{\cdot}1.5H_2O_2$). $Na_2CO_3{\cdot}1.5H_2O_2$ showed the highest oxygen release rate per unit mass and the shortest release duration time among three peroxides. A simple first-order decay model for predicting the release rate of oxygen from peroxide into pore water was presented and used to fit the experimental data. The first order oxygen release rate constants k for $MgO_2$, $CaO_2$ and $Na_2CO_3{\cdot}1.5H_2O_2$ were 0.45 /hr, 3.22 /hr and 134 /hr, respectively. If $MgO_2$ was mixed with clay, oxygen release rate was lowered significantly mainly due to limitation of contact area and diffusion, implying that oxygen can be provided to the indigenous aerobes for the extended period of time.

Temperature-dependent photoluminescence study on aluminum-doped nanocrystalline ZnO thin films by sol-gel dip-coating method

  • Nam, Giwoong;Park, Hyunggil;Yoon, Hyunsik;Kim, Soaram;Leem, Jae-Young
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.131-133
    • /
    • 2012
  • The photoluminescence (PT) properties of Al-doped ZnO thin films grown by the sol-gel dip-coating method have been investigated. At 12 K, nine distinct PL peaks were observed at 2.037, 2.592, 2.832, 3.027, 3.177, 3.216, 3.260, 3.303, and 3.354 eV. The deep-level emissions (2.037, 2.592, 2.832, and 3.027 eV) were attributed to native defects. The near-band-edge (NBE) emission peaks at 3.354, 3.303, 3.260, 3.216, and 3.177 eV were attributed to the emission of the neutral-donor-bound excitons (D0X), two-electron satellite (TES), free-to-neutral-acceptors (e,A0), donor-acceptor pairs (DAP), and second-order longitudinal optical (2LO) phonon replicas of the TES (TES-2LO), respectively. According to Haynes' empirical rule, we calculated the energy of a free exciton (FX) to be 3.374 eV. The thermal activation energy for D0X in the nanocrystalline ZnO thin film was found to be ~25 meV, corresponding to the thermal dissociation energy required for D0X transitions.

  • PDF

Review on Facilitated Olefin Transport Membranes Utilizing Polymer Electrolytes and Polymer Nanocomposites (고분자 전해질과 고분자 나노복합체를 활용한 올레핀 촉진수송 분리막에 대한 총설)

  • Kang, Sang Wook
    • Membrane Journal
    • /
    • v.26 no.3
    • /
    • pp.173-178
    • /
    • 2016
  • In this short review, the polymer electrolyte membranes consisting of polymer and Ag salts were introduced and various approaches to solve the long-term stability were summarized. In particular, utilizing $AgNO_3$ as carriers with ionic liquid, the replacement of polymer matrix as poly(ethylene phthalate) (PEP) for strong coordinative interactions with Ag ions and the introduction of $Al(NO_3)_3$ to $polymer/AgBF_4$ complexes were introduced for long-term stable facilitated olefin transport membranes. For the polymer nanocomposite membranes, the role of electron acceptors as polarizer on the surface of AgNPs and the approach to solve the low permeance were introduced.

Thermoelectric Properties of Fe-doped $CoSb_3$ Prepared by Encapsulated Induction Melting and Hot Pressing

  • Park, Kwan-Ho;Kim, Mi-Jung;Jung, Jae-Yong;You, Sin-Wook;Lee, Jung-Il;Ur, Soon-Chul;Kim, Il-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.686-687
    • /
    • 2006
  • The encapsulated induction melting and hot pressing were employed to prepare Fe-doped $CoSb_3$ skutterudites and their thermoelectric properties were investigated. Single phase $\delta-CoSb_3$ was successfully obtained by the subsequent heat treatment at 773K for 24 hours. Iron atoms acted as electron acceptors by substituting cobalt atoms. Thermoelectric properties were remarkably improved by the appropriate doping. $Co_{0.7}Fe_{0.3}Sb_3$ was found as an optimum composition for best thermoelectric properties in this work.

  • PDF

Nitrogen removal and electrochemical characteristics depending on separators of two-chamber microbial fuel cells

  • Lee, Kang-yu;Choi, In-kwon;Lim, Kyeong-ho
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.443-448
    • /
    • 2019
  • The present study was conducted to compare the voltage generation in two-chamber microbial fuel cells (MFCs) with a biocathode where nitrate and oxygen are used as a terminal electron acceptors (TEA) and to investigate the nitrogen removal and the electrochemical characteristics depending on the separators of the MFCs for denitrification. The maximum power density in a biocathode MFC using an anion exchange membrane (AEM) was approximately 40% lower with the use of nitrate as a TEA than when using oxygen. The MFC for denitrification using an AEM allows acetate ($CH_3COO^-$) as a substrate and nitrate ($NO_3{^-}$) as a TEA to be transported to the opposite sides of the chamber through the AEM. Therefore, heterotrophic denitrification and electrochemical denitrification occurred simultaneously at the anode and the cathode, resulting in a higher COD and nitrate removal rate and a lower maximum power density. The MFC for the denitrification using a cation exchange membrane (CEM) does not allow the transport of acetate and nitrate. Therefore, as oxidation of organics and electrochemical denitrification occurred at the anode and at the cathode, respectively, the MFC using a CEM showed a higher coulomb efficiency, a lower COD and nitrate removal rate in comparison with the MFC using an AEM.

A Novel Synthetic Route to Highly Cross-Linked Poly(alkylvinylether)s. Synthesis and Free Radical Polymerization of a Vinyl Ether Monomer Containing Electron Acceptors in Side Chain

  • 이주연;이현주;김무용
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.3
    • /
    • pp.257-262
    • /
    • 1996
  • p-(2-Vinyloxyethoxy)benzylidenemalononitrile 2 and methyl p-(2-vinyloxyethoxy)benzylidenecyanoacetate 3 was prepared by the condensation of p-(2-vinyloxyethoxy)benzaldehyde 1 with malononitrile or methyl cyanoacetate, respectively. Vinyl ether monomers 2 and 3 polymerized quantitatively with radical initiators in γ-butyrolactone solution at 65 ℃. The trisubstituted terminal double bond participated in the vinyl polymerization and radical polymerization of 2 and 3 led to swelling polymers 4 and 5 that were not soluble in common solvents due to cross-linking. Under the same polymerization conditions ethylvinyl ether polymerized well with model compounds of p-methoxybenzylidenemalononitrile 6 and methyl p-methoxybenzylidenecyanoacetate 7, respectively, to give 1:1 alternating copolymers 8 and 9 in high yields. Polymers 4 and 5 showed a thermal stability up to 300 ℃ without any characteristic Tg peaks in DSC thermograms. Alternating copolymers 8 and 9 were soluble in common solvents such as acetone and DMSO, and the inherent viscosities of the polymers were in the range of 0.36-0.74 dL/g. Films cast from acetone solution were cloudy and tough and Tg values obtained from DSC thermograms were in the range of 59-60 ℃.

Carbon Monoxide Dehydrogenase in Cell Extracts of an Acinetobacter Isolate (Acinetobacter sp.1의 일산화탄소 산화효소의 특성)

  • 조진원;김영민
    • Korean Journal of Microbiology
    • /
    • v.24 no.2
    • /
    • pp.133-140
    • /
    • 1986
  • Extracts of CO-autotrophically grown cells of Acinetobacter sp. 1 were shown to use thionin, methylene blue, or 2,6-dichlorophenol-indophenol, but not NAD, NADP, FAD, or FMN, as electron acceptors for the oxidation of CO under strictly anaerobic conditions. The CO dehydrogenase (CO-DH) in the thes bacterium was found to be an inducible enzyme. The enzyme activity was determined by an assay based on the CO-dependent reduction of thionin. Maximal reaction rates were found at pH 7.5 and $60^{\circ}C$, and the Arrhenius plot revealed an activation energy of 6.1 kcal/mol(25.5kJ/mol). THe $K_m$ m/ for CO was $154{\mu}M$. Known metalchelating agents tested had no effects on the CO-DH activity. No divalent cations tested affect the enzyme activity significantly escept $Cu^{2+}$ which suppressed the activity completely. The enzyme was inhibited by glucose and succinate. The same extracts catalyzed oxidation of hydrogen gas and formate with thionin as electron acceptor. The CO-DH of Acinetobacter sp. 1 was to have no immunological relationship with that of Pseudomonas carboxydohydrogena.

  • PDF