• Title/Summary/Keyword: electromagnetic transducer

Search Result 72, Processing Time 0.022 seconds

Application of a Fiber Fabry-Pérot Interferometer Sensor for Receiving SH-EMAT Signals (SH-EMAT의 신호 수신을 위한 광섬유 패브리-페롯 간섭계 센서의 적용)

  • Lee, Jin-Hyuk;Kim, Dae-Hyun;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.165-170
    • /
    • 2014
  • Shear horizontal (SH) waves propagate as a type of plate wave in a thin sheet. The dispersion characteristics of SH waves can be used for signal analysis. Therefore, SH-waves are useful for monitoring the structural health of a thin-sheet-structure. An electromagnetic acoustic transducer (EMAT), which is a non-contact ultrasonic transducer, can generate SH-waves easily by varying the shape and array of magnets and coils. Therefore, an EMAT can be applied to an automated ultrasonic testing system for structural health monitoring. When used as a sensor, however, the EMAT has a weakness in that electromagnetic interference (EMI) noise can occur easily in the automated system because of motors and electric devices. Alternatively, a fiber optic sensor works well in the same environment with EMI noise because it uses a light signal instead of an electric signal. In this paper, a fiber Fabry-P$\acute{e}$rot interferometer (FFPI) was proposed as a sensor to receive the SH-waves generated by an EMAT. A simple test was performed to verify the performance of the FFPI sensor. It is thus shown that the FFPI can receive SH-wave signals clearly.

Directivity Synthesis Simulation of Ultrasonic Transducer Using Gauss Elimination Method (GAUSS 소거법을 이용한 초음파 트랜스듀서의 지향성합성 SIMULATION)

  • 이정남;조기량;이진선;이문수
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.6 no.4
    • /
    • pp.20-27
    • /
    • 1995
  • A numerical simulation is carried out on the directivity synthesis of ultrasonic transducers by point source array. Gauss elimination method is practiced by means of a directive method to realize the desired directivity. Desired directivity is chosen to be that of a directivity of line source, a beam width and a direction arbitrary specified. On the numerical result, Gauss elimination method is showed high speed ca- lculative simulation and stability of system more than iterative method(LMS, DFP). Numerical simulations are carried out by PC(CPU:80486 DX2, RAM 16Mbyte).

  • PDF

Third Harmonic Generation of Shear Horizontal Guided Waves Propagation in Plate-like Structures

  • Li, Weibin;Xu, Chunguang;Cho, Younho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.2
    • /
    • pp.149-154
    • /
    • 2016
  • The use of nonlinear ultrasonics wave has been accepted as a promising tool for monitoring material states related to microstructural changes, as it has improved sensitivity compared to conventional non-destructive testing approaches. In this paper, third harmonic generation of shear horizontal guided waves propagating in an isotropic plate is investigated using the perturbation method and modal analysis approach. An experimental procedure is proposed to detect the third harmonics of shear horizontal guided waves by electromagnetic transducers. The strongly nonlinear response of shear horizontal guided waves is measured. The accumulative growth of relative acoustic nonlinear response with an increase of propagation distance is detected in this investigation. The experimental results agree with the theoretical prediction, and thus providing another indication of the feasibility of using higher harmonic generation of electromagnetic shear horizontal guided waves for material characterization.

Analysis of Microwave-Induced Thermoacoustic Signal Generation Using Computer Simulation

  • Dewantari, Aulia;Jeon, Se-Yeon;Kim, Seok;Nikitin, Konstantin;Ka, Min-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Computer simulations were conducted to demonstrate the generation of microwave-induced thermoacoustic signal. The simulations began with modelling an object with a biological tissue characteristic and irradiating it with a microwave pulse. The time-varying heating function data at every particular point on the illuminated object were obtained from absorbed electric field data from the simulation result. The thermoacoustic signal received at a point transducer at a particular distance from the object was generated by applying heating function data to the thermoacoustic equation. These simulations can be used as a foundation for understanding how thermoacoustic signal is generated and can be applied as a basis for thermoacoustic imaging simulations and experiments in future research.

Development and Application of Phased Array System for Defect Imaging in Plate-like Structures (평판 구조물의 영상화를 위한 위상 배열 시스템 개발 및 응용)

  • Lee, Joo Kyung;Kwon, Young Eui;Lee, Heung Son;Seung, Hong Min;Kim, Ki Yeon;Lee, Jun Kyu;Kim, Hoe Woong;Lee, Ho Cheol;Kim, Yoon Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.2
    • /
    • pp.123-130
    • /
    • 2014
  • An ultrasonic magnetostrictive transducer-based phased-array system for imaging defects in plate structures is newly proposed. In that most ultrasonic phased array systems rely on piezoelectric transducers or electromagnetic acoustic transducers, this system has its own unique feature of employing magnetostrictive transducers. Interest in using a phased array system using magnetostrictive transducers has been recently reported for pipe inspection but no such system has been developed for plate inspection. In this investigation, we aim to propose a phased array system using OL-MPTs (Omnidirectional Lamb wave Magnetostrictive Patch Transducers) for plate inspection. The developed system consists of a multi-channel function generator, power amplifiers, preamplifiers and a data acquisition unit. In the process of its development, each of the units must be checked and in doing so, we suggest types of ultrasonic wave experiments that should be carried out. Finally, the phased system using a transducer array composed of eight OL-MPTs is newly configured and is applied for actual crack detection experiments.

Development and Application of Penetration Type Field Shear Wave Apparatus (관입형 현장 전단파 측정장치의 개발 및 적용)

  • Lee, Jong-Sub;Lee, Chang-Ho;Yoon, Hyung-Koo;Lee, Woo-Jin;Kim, Hyung-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.67-76
    • /
    • 2006
  • The reasonable assessment of the shear stiffness of a dredged soft ground and soft clay is difficult due to the soil disturbance. This study addresses the development and application of a new in-situ shear wave measuring apparatus (field velocity probe: FVP), which overcomes several of the limitations of conventional methods. Design concerns of this new apparatus include the disturbance of soils, cross-talking between transducers, electromagnetic coupling between cables, self acoustic insulation, the constant travel distance of S-wave, the rotation of the transducer, directly transmitted wave through a frame from transducer to transducer, and protection of the transducer and the cable. These concerns are effectively eliminated by continuous improvements through performing field and laboratory tests. The shear wave velocity of the FVP is simply calculated, without any inversion process, by using the travel distance and the first arrival time. The developed FVP Is tested in soil up to 30m in depth. The experimental results show that the FVP can produce every detailed shear wave velocity profiles in sand and clay layers. In addition, the shear wave velocity at the tested site correlates well with the cone tip resistance. This study suggests that the FVP may be an effective technique for measuring the shear wave velocity in the field to assess dynamic soil properties in soft ground.

Dseign of a Selectable Left and Right Handed Circular Polarizer (좌-우선회 원편파 상호 선택 변환 편파기 설계)

  • Yang, Doo-Yeong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.3
    • /
    • pp.254-262
    • /
    • 1996
  • In this paper, we present a polarizer that consists of three step rotary detents which can selectively convert linear polarzation into circular polarization and vice versa. For the design of the polarizer, the transmission line theory is applied to design the wa- veguide mode transducer for the modes to be smothly converted in waveguides, and a dielectric plate is inserted in circular waveguide for the conversion of a polarized wave with the angle of an inserted dielectric plate. Also, we simulated to obtain the optimum values of the transmission and the reflection coefficient characteristics at input and output port, and proved the propriety of the theory from the knowledge of measuring the constructed polarizer with the designed data.

  • PDF

Study on Improvement of a LVDT for Displacement Measurements (변위측정용 LVDT의 개선에 관한 연구)

  • Park, Y.T.;Kwon, S.W.;Gang, J.H.
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.1-8
    • /
    • 1996
  • A LVDT is an electromechanical transducer that produces an electrical output proportional to the displacement of separate movable core. A convential LVDT in construction has a disadvantage which the measurement range to the length ratio is small. This paper proposed a new type LVDT, which improved methodes of construction. The proposed LVDT and a conventional LVDT with the same dimension are simulated by FEM. In the process of the simulation and construction, the performance of two type LVDTs are evaluated. Linearity error of a conventional LVDT was ${\pm}3\;%$ in measuring range of ${\pm}5\;mm$ and linearity error of the proposed LVDT was ${\pm}0.5\;%$ in the same range. It was evident from the theoritical relationships and the experimental results that the proposed LVDT has been better performance than a convential type.

  • PDF

Novel Design of Brushless and Sensorless Vibration Motor Used for Cell-Phones (새로운 형태의 휴대폰용 브러쉬리스 센서리스 진동모터의 설계)

  • Lee, Hong-Joo;Kim, Kwang-Suk;Lee, Chang-Min;Hwang, Gun-Yong;Hwang, Sang-Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.224-229
    • /
    • 2008
  • With the wide use of mobile phones, a paging signal by a sound transducer acts as an environmental noise on many occasions, thus necessitating an alternative paging signal by a vibration motor. Conventional vibration motors employ three-phase windings with mechanical brushes for commutation. In this paper, a new one-phase brushless and sensorless vibration motor is introduced utilizing digital signal processor chips in cell-phones. For electromagnetic field analysis, two-dimensional modeling can be implemented to determine the back electromotive force using axisymmetric boundary conditions. Geometric design parameters, such as coil pitch and magnet pitch. are considered for performance optimization. Through the experiments, it is shown that the proposed design has the equivalent performance with reduced number of parts, thus enhancing manufacturing productivity and reducing manufacturing cost.

  • PDF

Evaluation on Material Properties of 3Cr-lMo-0.25V Steel by Electromagnetic Methods (전자기법을 이용한 3Cr-lMo-0.25V 강의 물성 평가)

  • Nam, Young-Hyun;Ahn, Bong-Young;Lee, Seung-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.255-261
    • /
    • 2003
  • It is advantageous to use NDE methods to assess the mechanical properties of materials since the conventional method is time-consuming and sometimes requires cutting of sample from the component. The NDE parameters such as ultrasonic velocity and attenuation, electric resistivity, and magnetic coercive force and remanance have been utilized to evaluate changes of material properties due to heat treatment condition. It has been found that changes of materials properties under quenched and tempered/PWHT treatments could not be detected using EMAT and Electrical resistivity methods. However, victors hardness and magnetic hysteresis loop decreased with heat treatment procedures. These results were obtained using 3Cr-lMo-0.25V steel. The magnetic parameters were found to be most sensitive to changes of material properties.