• Title/Summary/Keyword: electromagnetic fields

Search Result 634, Processing Time 0.025 seconds

Effect of Skin Tissue Necrosis Relaxation by Low Frequency Pulsed Electromagnetic Fields (LF-PEMF) Stimulation (저주파 펄스 전자기장 자극에 의한 피부 조직괴사 완화 효과)

  • Lee, Jawoo;Kim, Junyoung;Lee, Yongheum
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.25-30
    • /
    • 2021
  • Objective: The aim of this study is to consider the effect of skin tissue necrosis by improving blood flow in animal skin models for low frequency pulsed electromagnetic fields (LF_PEMF) stimulation. Methods: Twenty rats (Wistar EPM-1 male, 280-320 g) were randomly divided into control groups (n=10) and the PEMF groups (n=10). To induce necrosis of the skin tissue, skin flap was treated in the back of the rat, followed by isolation film and skin flap suturing. Subsequently, the degree of necrosis of the skin tissue was observed for 7 days. The control group did not perform any stimulation after the procedure. For the PEMF group, LF_PEMF (1 Hz, 10 mT) was stimulated in the skin flap area, for 30 minutes a day and 7 days. Cross-polarization images were acquired at the site and skin tissue necrosis patterns were analyzed. Results: In the control group, skin tissue necrosis progressed rapidly over time. In the PEMF group, skin tissue necrosis was slower than the control group. In particular, no further skin tissue necrosis progress on the day 6. Over time, a statistically significant difference from the continuous necrosis progression pattern in the control group was identified (p<0.05). Conclusions: It was confirmed that low frequency pulsed electromagnetic fields (LF_PEMF) stimulation can induce relaxation of skin tissue necrosis.

The Electric Fields Characteristics of Partial Discharges in $SF_6$ ($SF_6$ 가스중 부분방전시 전계 특징)

  • 김해준;박경태;박광서;이현동;김충년;이광식
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.145-149
    • /
    • 2001
  • The most of faults in gas insulation of power facilities are caused by partial discharge. Therefore we simulated partial discharge and measured the radiated electromagnetic wave emitted from partial discharge in SF$_{6}$ gas by biconical antenna. This paper describes time delay and electric fields pulse characteristics of radiated electromagnetic waves with distance(1[m], 3[m], 5[m]) between antenna and discharge source.e.

  • PDF

The Analyses and Measurements of Electromagnetic Fields for the Urban Maglev Vehicle (도시형 자기부상열차의 전자파 측정 및 분석)

  • Kim, Bong-Seup;Kim, Young-Jung;Park, Do-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.14-17
    • /
    • 2007
  • 자기부상열차는 직류 전원을 사용하여 부상용 전자석으로 주행선로와 10mm 내외의 부상상태를 유지하면서 교류 전원을 이용한 선형 유도전동기로 추진하는 방식이다. 본 논문에서는 실차 모델의 자기부상열차에 대한 전자파를 측정하여 국내 전자파인체보호기준 및 세계 권고기준과 비교 분석하였다.

  • PDF

Analysis and Improvement of Shielding Effect of Electromagnetic Field in Extremely Low Frequency System (극저주파 시스템에서 전자장 차폐효과 해석 및 개선 방안)

  • Kim, Sang-Hon;Choi, Hong-Soon;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.978-979
    • /
    • 2006
  • Recently, Peoples are exposed the ELF(Extremely Low Frequency) magnetic fields in the vicinity of underground transmission lines, and there are the generally accepted opinion that the magnetic fields affect the human body and there are possibility of the disease. Also in relation to this problem, technical solution methods and research are advanced for reducing the magnetic fields. In this paper, to practically understand the magnetic fields underground transmission lines, We analyze the electromagnetic field distribution in the underground transmission lines by means of FEM(Finite Element Methods) and present that improvement of the effective shielding methods by applying cable arrangements and shielding materials, eddy current problem to the underground transmission lines by means of the numerical analysis Tool.

  • PDF

Efficient electromagnetic boundary conditions to accelerate optimization of RF devices

  • Cho, Yong-Heui
    • International Journal of Contents
    • /
    • v.7 no.4
    • /
    • pp.50-55
    • /
    • 2011
  • To achieve efficient field formulations and fast numerical computations, the reciprocal relations and equivalence between tangential and normal boundary conditions for electromagnetic fields are discussed in terms of the Maxwell's differential equations. Using the equivalence of each boundary condition, we propose the six essential boundary conditions, which may be applicable to matching electromagnetic discontinuities to efficiently design RF devices. In order to verify our approach, the reflection characteristics of a rectangular waveguide step are compared with respect to six essential boundary conditions.

Resistive Grounding Technique of Heat Sink for Reducing Radiation Noise

  • Ahn, Chang-Hoi;Oh, JaeHyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1724-1728
    • /
    • 2014
  • Heat sink has been used to help an electrical device operate in normal temperature condition. But heat sink radiates unwanted electromagnetic wave, which may cause electromagnetic interference problem. A resistance loaded grounding technique is proposed to reduce electromagnetic wave radiation by a heat sink. Numerical simulations are accomplished to find optimal loading resistance. Also electromagnetic fields radiated by from a heat sink are measured and compared with the simulation results. The test results verify the usefulness of the proposed technique.

Calculation of the Electromagnetic Wave Ields Near Electric Power Lines (전력선로 근방의 전자파 전자계 계산)

  • Kang, Dae-Ha;Lee, Young-Sik;Park, Jung-Eun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.79-88
    • /
    • 2008
  • In this study electromagnetic fields near electric power lines were derived by dipole antenna theory and electromagnetic fields near 3 phase power lines with vertical configurations were formulated and could be computed easily using these formula. It seems that those formula could be applicable to the consideration of electromagnetic fields during the design of transmission and distribution lines. Those formulated equations on elements of electromagnetic fields were applied to the model of a transmission-line system and were calculated by Matlab programs. The calculation results are follows. For variation of horizontal distance profiles of $E_y$ and $B_z$ are same each other, and also those of $B_y$ and $E_z$ are same each other. This means that coupled elements of E and B are perpendicular each other and have the propagation direction of the right-hand system such as $x{\rightarrow}E_y{\rightarrow}B_z$. Resultant electric field E is dominated by the element $E_y$ and resultant magnetic field B is dominated by the element $B_z$.

Parameters of the Electric and Magnetic Fields Due to Cloud-to-Ground Lightnings (낙뢰에 의한 전계와 자계 파형의 파라미터)

  • 이복희;안창환
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.3
    • /
    • pp.359-368
    • /
    • 1998
  • One of the topics concerning the electromagnetic compatibility of modern electronic circuits is to take protection from transient overvoltages caused by not only cloud-to-ground lightnings but also induced lightning discharges. In this paper, the vertical electric and horizontal magnetic fields from cloud-to-ground lightnings were measured and analyzed. The electric and magnetic fields waveforms associated with cloud-to-ground lightnings have several subsidiary peaks which decrease with time. There were not much differences between the electric and magnetic field due to long distance cloud-to-ground discharges. Average values of 10~90% rise times of electric fields are $4.65mutextrm{s}$ for the positive cloud-to-ground lightning and $3.29mutextrm{s}$ for the negative cloud-to-ground lightning, respectively. Also, in the positive and negative cloud-to-ground lightning discharges, the zero-to-zero crossing times in the wave tail of magnetic fields are significantly longer than those of the electric fields.

  • PDF

Proposing a low-frequency radiated magnetic field susceptibility (RS101) test exemption criterion for NPPs

  • Min, Moon-Gi;Lee, Jae-Ki;Lee, Kwang-Hyun;Lee, Dongil
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1032-1036
    • /
    • 2019
  • When the equipment which is related to safety or important to power production is installed in nuclear power plant units (NPPs), verification of equipment Electromagnetic Susceptibility (EMS) must be performed. The low-frequency radiated magnetic field susceptibility (RS101) test is one of the EMS tests specified in U.S NRC (Nuclear Regulatory Commission) Regulatory Guide (RG) 1.180 revision 1. The RS101 test verifies the ability of equipment installed in close proximity to sources of large radiated magnetic fields to withstand them. However, RG 1.180 revision 1 allows for an exemption of the low-frequency radiated magnetic susceptibility (RS101) test if the safety-related equipment will not be installed in areas with strong sources of magnetic fields. There is no specific exemption criterion in RG 1.180 revision 1. EPRI TR-102323 revision 4 specifically provides a guide that the low-frequency radiated magnetic field susceptibility (RS101) test can be conservatively exempted for equipment installed at least 1 m away from the sources of large magnetic fields (>300 A/m). But there is no exemption criterion for equipment installed within 1 m of the sources of smaller magnetic fields (<300 A/m). Since some types of equipment radiating magnetic flux are often installed near safety related equipment in an electrical equipment room (EER) and main control room (MCR), the RS101 test exemption criterion needs to be reasonably defined for the cases of installation within 1 m. There is also insufficient data regarding the strength of magnetic fields that can be used in NPPs. In order to ensure confidence in the RS101 test exemption criterion, we measured the strength of low-frequency radiated magnetic fields by distance. This study is expected to provide an insight into the RS101 test exemption criterion that meets the RG 1.180 revision 1. It also provides a margin analysis that can be used to mitigate the influence of low-frequency radiated magnetic field sources in NPPs.

Variation of Dynamic Characteristics of Composite Plates Subjected to Electromagnetic and Thermal Fields via Piezoelectric Control (전자기장과 열하중을 받는 복합재료 평판의 압전제어에 따른 동특성 변화)

  • Park, Sang-Yun;Song, Ohseop
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.379-387
    • /
    • 2016
  • Structural model of laminated composite plate based on the first order shear deformation theory and subjected to a combination of piezoelectric, electromagnetic and thermal fields is established. Coupled equations of motion are derived via Hamilton's principle on the basis of electromagnetic and piezoelectric equations which are involved in constitutive equations. Proportional control and velocity feedback control logics are applied via boundary control moments and forces. Variations of dynamic chasracteristics of composite plate with collocated piezoelectric sensor and actuators, electromagnetic field and temperature gradient are investigated and it reveals that dynamic characteristics of structure can be effectively controlled by utilizing the piezoelectric effect and ply angles of fiber reinforced composites.