• Title/Summary/Keyword: electrolytic cell

Search Result 128, Processing Time 0.026 seconds

Continuous Nitrate Removal using Bipolar ZVI Packed Bed Electrolytic Cell (영가철(Fe0) 충진 복극전해조를 이용한 질산성질소의 연속식 제거 연구)

  • Jeong, Joo-Young;Kim, Han-Ki;Shin, Ja-Won;Park, Joo-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.79-84
    • /
    • 2012
  • Nitrate is a common contaminant in groundwater aquifer. The present study investigates the performance of the bipolar zero valent iron (ZVI, $Fe^0$) packed bed electrolytic cell in removing nitrate in different operating conditions. The packing mixture consists of ZVI as electronically conducting material and silica sand as non-conducting material between main cathode and anode electrodes. In the continuous experiments for the simulated wastewater (contaminated groundwater, initial nitrate about 30 mg/L as N and electrical conductivity about 300 ${\mu}S/cm$), over 99% removal of nitrate was achieved in the applied voltage 600 V and at the flow rate of 20 mL/min. The optimum packing ratio (v/v) and flow rate were determined to be 1:1~2:1 (silica sand to ZVI), 30 mL/ min respectively. Effluent pH was proportional to nitrate influx concentration, and ammonia which is the final product of nitrate reduction was about 60% of nitrate influx. Magnetite was observed on the surface of the used ZVI as major oxidation product.

Comparison of a Cation Exchange Membrane and a Ceramic Membrane in Electrosynthesis of Ammonium Persulfate by a Pilot Experimental Study

  • Zhou, Junbo;Wang, Chao;Guo, Yujing;Gao, Liping
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.115-122
    • /
    • 2019
  • In order to improve the current efficiency and reduce the energy consumption in the electrosynthesis of ammonium persulfate, electrolytic properties of a perfluorosulfonic cation exchange membrane named PGN membrane and the $Al_2O_3$ ceramic membrane in the electrosynthesis of ammonium persulfate were studied and compared in a pilot electrolytic cell using a welded platinum titanium as the anode and a Pb-Sb alloy as the cathode. The effect of cell voltage, electrolyte flow rate and electrolysis time of the electrolytes on the current efficiency and the energy consumption were studied. The results indicated that the PGN membrane could improve current efficiency to 95.12% and reduce energy consumption to $1110kWh\;t^{-1}$ (energy consumption per ton of the ammonium persulfate generated) under the optimal operating conditions and the highest current efficiency of the $Al_2O_3$ ceramic membrane was 72.61% with its lowest energy consumption of $1779kWh\;t^{-1}$. Among 5 times of the electrolysis of the electrolytes, the lowest current efficiency of the PGN membrane was 85.25% with the highest energy consumption of $1244kWh\;t^{-1}$ while the lowest current efficiency of the $Al_2O_3$ ceramic membrane was 67.44% with the highest energy consumption of $1915kWh\;t^{-1}$, which suggested the PGN membrane could be used in the 5-stage electrolytic cell for the industrially continuous electrosynthesis of ammonium persulfate. Therefore the PGN membrane can be efficient to improve the current efficiency and reduce the energy consumption and can be applied in the industrial electrosynthesis of ammonium persulfate.

Removal of Nitrate Nitrogen for Batch Reactor by ZVI Bipolar Packed Bed Electrolytic Cell (영가철 충진 회분식 복극전해조에 의한 질산성 질소 제거)

  • Jeong, Joo Young;Park, Jeong Ho;Choi, Won Ho;Park, Joo Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2B
    • /
    • pp.187-192
    • /
    • 2011
  • Nitrate nitrogen is common contaminant in groundwater aquifers, its concentration is regulated many countries below 10 mg/L as N (As per WHO standards) in drinking water. An attempt was made to get optimal results for the treatment of nitrate nitrogen in groundwater by conducting various experiments by changing the experimental conditions for ZVI bipolar packed bed electrolytic cell. From the experimental results it is evident that the nitrate nitrogen removal is more effective when the reactor conditions are maintained in acidic range but when the acidic environment changes to alkaline due to the hydroxide formed during the process of ammonia nitrogen there by increasing the pH reducing the hydrogen ions required for reduction which leads to low effectiveness of the system. In the ZVI bipolar packed bed electrolytic cell, the packing ratio of 0.5~1:1 was found to be most effective for the treatment of nitrate nitrogen because ZVI particles are isolated and individual particle act like small electrode with low packing ratio. It is seen that formation of precipitate and acceleration of clogging incrementally for packing ratio more than 2:1, decreasing the nitrate nitrogen removal rate. When the voltage is increased it is seen that kinetics and current also increases but at the same time more electric power is consumed. In this experiment, the optimum voltage was determined to be 50V. At that time, nitrate nitrogen was removed by 94.9%.

A Study on the Preparation of Electrolytic Manganese Dioxide (전해 이산화망간 제조에 관한 연구)

  • Lee Mook Lee;Jae Won Kim;Ung Up Chi;Jong Ju Shin
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.306-313
    • /
    • 1973
  • With the intention of obtaining technical data for the industrial production of ${\gamma}-MnO_2$ for dry cell depolarizer by electrolytic oxidation of acidic manganese sulfate solution made from domestic rhodochrosite, optimum conditions of ore leaching, purification of leached solution and electrolytic oxidation of divalent manganes to tetravalent were investigated using simulated micro pilot plant having a production capacity of 4 kg of $MnSO_4$ per day. The nature and quality of the products were investigated by means of chemical analysis, DTA, X-ray diffraction and electron microscopy. The cell activity of $MnO_2$were examined by cell discharging character measurements. The optimum electrolysis conditions were as follow: Temperature of the electrolyte, above $90^{\circ}C$; current density, 0.7${\sim}A/dm^2$; anode materials, graphite or lead ; concentration of electrolyte, $MnSO_4 50{\sim}150g/l $ g/l and $H_2SO_4/MnSO_4 = 0.15{\sim}0.25$. Under the best condition the current efficiency was 99% and the products were almost pure ${\gamma}-MnO_2$. The cell discharging character were good and almost the same as that of regular grade commercial electrolytic manganese dioxide.

  • PDF

Continuous removal of heavy metals by coupling a microbial fuel cell and a microbial electrolytic cell

  • Xie, Guo R.;Choi, Chan S.;Lim, Bong S.;Chu, Shao X.
    • Membrane and Water Treatment
    • /
    • v.11 no.4
    • /
    • pp.283-294
    • /
    • 2020
  • This work aims at studying the feasibility of continuous removal of mixed heavy metal ions from simulated zinc plating wastewaters by coupling a microbial fuel cell and a microbial electrolysis cell in batch and continuous modes. The discharging voltage of MFC increased initially from 0.4621 ± 0.0005 V to 0.4864 ± 0.0006 V as the initial concentration of Cr6+ increased from 10 ppm to 60 ppm. Almost complete removal of Cr6+ and low removal of Cu2+ occurred in MFC of the MFC-MEC-coupled system after 8 hours under the batch mode; removal efficiencies (REs) of Cr6+ and Cu2+ were 99.76% and 30.49%. After the same reaction time, REs of nickel and zinc ions were 55.15% and 76.21% in its MEC. Cu2+, Ni2+, and Zn2+ removal efficiencies of 54.98%, 30.63%, 55.04%, and 75.35% were achieved in the effluent within optimum HRT of 2 hours under the continuous mode. The incomplete removal of Cu2+, Ni2+ and Zn2+ ions in the effluent was due to the fact that the Cr6+ was almost completely consumed at the end of MFC reaction. After HRT of 12 hours, at the different sampling locations, Cr6+ and Cu2+ removal efficiencies in the cathodic chamber of MFC were 89.95% and 34.69%, respectively. 94.58%, 33.95%, 56.57%, and 75.76% were achieved for Cr6+, Cu2+, Ni2+ and Zn2+ in the cathodic chamber of MEC. It can be concluded that those metal ions can be removed completely by repeatedly passing high concentration of Cr6+ through the cathode chamber of MFC of the MFC-MEC-coupled system.

Study of the Electrolytic Reduction of Uranium Oxide in LiCl-Li$_{2}$O Molten Salts with an Integrated Cathode Assembly

  • Park Sung-Bin;Seo Chung-seok;Kang Dae-Seung;Kwon Seon-Gil;Park Seong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.2
    • /
    • pp.105-112
    • /
    • 2005
  • The electrolytic reduction of uranium oxide in a LiCl-Li$_{2}$O molten salt system has been studied in a 10 g U$_{3}$O$_{8}$ /batch-scale experimental apparatus with an integrated cathode assembly at 650$^{\circ}C$. The integrated cathode assembly consists of an electric conductor, the uranium oxide to be reduced and the membrane for loading the uranium oxide. From the cyclic voltammograms for the LiCl-3 wt$\%$ Li$_{2}$O system and the U$_{3}$O$_{8}$-LiCl-3 wt$\%$ Li$_{2}$O system according to the materials of the membrane in the cathode assembly, the mechanisms of the predominant reduction reactions in the electrolytic reactor cell were to be understood; direct and indirect electrolytic reduction of uranium oxide. Direct and indirect electrolytic reductions have been performed with the integrated cathode assembly. Using the 325-mesh stainless steel screen the uranium oxide failed to be reduced to uranium metal by a direct and indirect electrolytic reduction because of a low current efficiency and with the porous magnesia membrane the uranium oxide was reduced successfully to uranium metal by an indirect electrolytic reduction because of a high current efficiency.

  • PDF

Fluoride Removal by Granular Aluminium Bipolar Packed Bed Electrolytic Cell (입자상 알루미늄 충전복극전해조에 의한 불소제거)

  • Ha, Ji-Young;Park, Jung-Hoon;Woo, Sung-Hoon;Park, Seung-Cho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.684-688
    • /
    • 2007
  • The results of potentiostatic electrolysis of aqueous solution containing fluoride by bipolar packed bed electrolytic cell filled with granular aluminium were summarized. Removal efficiency of fluoride ion which it analyzed with ion chromatograph were 53, 73, 90% in applied voltage. Control the concentration of supporting electrolyte were 10, 30, 50, 70 mg/L and volume of packing material were 0, 25, 50, 75%, respectively, the quantity of electricity was $2.58A{\cdot}hr$ when the concentration of supporting electrolyte was 50 mg/L and the volume of packing material was 75%. As the results of electrolytsis of fluoride aqueous solution containing fluoride 10, 30, 50, 70 mg/L for 3 hours at 10 V, the removal efficiency of fluoride were 93.3, 80, 68.6%. Then the quantity of electricity were 2.58, 3.89, $5.43A{\cdot}hr$ and the fluoride removal amounts per quantity of electricity were 4.0, 3.5, $2.0mg/A{\cdot}hr$.

Electrical Characteristics According to the Manufacturing Process of the Flexible Li/MnO2 Primary Cell (플렉서블 Li/MnO2 일차전지의 제조공정에 따른 전기적 특성)

  • Lee, Mi-Jai;Chae, Yoo-Jin;Kim, Jin-Ho;Hwang, Jong-Hee;Park, Sang-Sun
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.717-721
    • /
    • 2012
  • Manganese dioxide ($MnO_2$) is one of the most important cathode materials used in both aqueous and non-aqueous batteries. The $MnO_2$ polymorph that is used for lithium primary batteries is synthesized either by electrolytic (EMD-$MnO_2$) or chemical methods (CMD-$MnO_2$). Commonly, electrolytic manganese dioxide (EMD) is used as a cathode mixture material for dry-cell batteries, such as a alkaline batteries, zinc-carbon batteries, rechargeable alkaline batteries, etc. The characteristics of lithium/manganese-dioxide primary cells fabricated with EMD-$MnO_2$ powders as cathode were compared as a function of the parameters of a manufacturing process. The flexible primary cells were prepared with EMD-$MnO_2$, active carbon, and poly vinylidene fluoride (PVDF) binder (10 wt.%) coated on an Al foil substrate. A cathode sheet with micro-porous showed a higher discharge capacity than a cathode sheet compacted by a press process. As the amount of EMD-$MnO_2$ increased, the electrical conductivity decreased and the electrical capacity increased. The cell subjected to heat-treatment at $200^{\circ}C$ for 1 hr showed a high discharge capacity. The flexible primary cell made using the optimum conditions showed a capacity and an average voltage of 220 mAh/g and 2.8 V, respectively, at $437.5{\mu}A$.

Preparation of Magnesium by Fused Salt Electrolysis Using Mono-Polar Cell (Mono-Polar Cell 용융염전해(熔融鹽電解)에 의한 마그네슘 제조)

  • Park, Hyung-Kyu;Kim, Chul-Joo;Yoon, Ho-Sung;Kim, Sung-Don;Eom, Hyoung-Choon
    • Resources Recycling
    • /
    • v.18 no.3
    • /
    • pp.62-68
    • /
    • 2009
  • Continuous operation for 24h was carried out to establish the optimum condition at the magnesium fused salt electrolysis using a self made 150 ampere mono-polar type cell. An electrolyte composition of $MgCl_2$ 25%, NaCl 55%, $CaCl_2$ 19%, $CaF_2$ 1% was electrolyzed with applied voltage 7V, cathode current density $0.7-0.75A/cm^2$, electrode distance 6cm at $720{\sim}740^{\circ}C$ for 24 hours. Changes of applied current, composition of the electrolyte, current efficiency were investigated. Through the experiments, there were not any operating troubles with the self-made electrolytic cell. Purity of the electrolyzed magnesium metal was above 99%, and 89% of current efficiency was achieved. Some basic data for scale-up of the magnesium electrolysis equipment which would be necessary for commercialization were obtained.

Electrolytic Hydrogen Production Using Solution Processed CIGS thin Film Solar Cells (용액 공정 CIGS 박막 태양 전지를 이용한 물 분해 수소 생산)

  • Jeon, Hyo Sang;Park, Se Jin;Min, Byoung Koun
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.4
    • /
    • pp.282-287
    • /
    • 2013
  • Hydrogen production from water using solar energy is attractive way to obtain clean energy resource. Among the various solar-to-hydrogen production techniques, a combination of a photovoltaic and an electrolytic cell is one of the most promising techniques in term of stability and efficiency. In this study, we show successful fabrication of precursor solution processed CIGS thin film solar cells which can generate high voltage. In addition, CIGS thin film solar cell modules producing over 2V of open circuit voltage were fabricated by connecting three single cells in series, which are applicable to water electrolysis. The operating current and voltage during water electrolysis was measured to be 4.23mA and 1.59V, respectively, and solar to hydrogen efficiency was estimated to be 3.9%.