• Title/Summary/Keyword: electrolyte concentration

Search Result 685, Processing Time 0.023 seconds

Preparation of Tantalum Anodic Oxide Film in Citric Acid Solution - Evidence and Effects of Citrate Anion Incorporation

  • Kim, Young-Ho;Uosaki, Kohei
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.163-170
    • /
    • 2013
  • Tantalum anodic oxide film was prepared in citric acid solution of various concentrations and the prepared Ta anodic oxide film was characterized by various electrochemical techniques and X-ray photoelectron spectroscopy (XPS). The prepared Ta anodic oxide film showed typical n-type semiconducting properties and the dielectric properties were strongly dependent on the citric acid concentration. The variation of electrochemical and electronic properties was explained in terms of electrolyte anion incorporation into the anodic oxide film, which was supported by XPS measurements.

Micro Electrochemical Machining of Stainless Steel Using Citric Acid (구연산을 이용한 스테인레스 스틸의 미세 전해가공)

  • Ryu, Shi-Hyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.134-140
    • /
    • 2008
  • Micro electrochemical machining (ECM) is conducted on stainless steel 304 using non-toxic electrolyte of citric acid. Electrochemical dissolution region is minimized by applying a few hundred second duration pulses between the tungsten SPM tip and the work material. ECM characteristics according to citric acid concentration, feeding velocity and electric conditions such as pulse amplitude, pulse frequency, and offset voltage are investigated through a series of experiments. Micro holes of $60{\mu}m$ in diameter with the depth of $50{\mu}m$ and $90{\mu}m$ in diameter with the depth of $100{\mu}m$ are perforated. Square and circular micro cavities are also manufactured by electrochemical milling. This research can contribute to the development of safe and environmentally friendly micro ECM process.

Triethanolamine 질산鹽 基礎液中의 鉛(II)의 폴라로그라프波에 對하여

  • Kim, Hwang-Am
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.108-112
    • /
    • 1962
  • Lead ion gives a well-defined wave with $E_{1/2}$=-0.57V(vs. S.C.E.) from a base electrolyte consisting of 0.1M TEA=0.5M$KNO_3$=0.0002% methl red. (pH 9.8).The reduction wave of lead is lead(II) to lead(0) and electrode reaction of this wave diffusion controlled.Its diffusion current constant is 2.45 and temperature coefficient of this wave is about 1.2%.Under above conditions, diffusion current is proportional to the concentration of lead in the range of $10^{-3}$ ~$10^{-4}$ M.

  • PDF

The Polarographic Wave of Co (III)-Triethanolamine Complex (코발트(III)-Triethanolamine 錯鹽의 폴라로그라프波에 對하여)

  • Hwang Am Kim
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.1
    • /
    • pp.34-37
    • /
    • 1963
  • Cobalt(Ⅲ) ion gives two step waves with $E_{1/2}$-0.1V(?)(vs.S.C.E.) and $E_{1/2}$-1.37V(vs. S.C.E.) from a base electrolyte consisting of 0.1 M TEA+sodium borate+0.0002% gelatin. The first wave results from the reduction Co(Ⅲ) to Co(Ⅱ). The second wave corresponding to the reduction Co(Ⅱ) to Co(0) and this wave is diffusion controlled. The diffusion current constant of the second wave is 2.7. Under these-conditions, diffusion current of the second wave is proportional to the concentration of Co (Ⅱ) in the range of $10^{-3}{\sim}10^{-4}$ M.

  • PDF

Electrochemical Synthesis of Octahedral Nanostructured PbF2

  • Lee, Joon-Ho;Choi, Jin-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.463-466
    • /
    • 2011
  • In this work, we investigate anodization of Pb in ethylene glycol containing small amount of $NH_4F$, demonstrating that ${\beta}-PbF_2$ particles with octahedral morphology can be prepared by adjusting the applied potential and anodizing time. FE-SEM images and XRD measurements of anodic nanostructures as a function of anodizing time clearly show that PbO is first formed on Pb. Subsequently, a local dissolution of PbO leads to formation of skeleton structure of PbO, releasing $Pb^{2+}$ ions in the electrolyte. The lead ions can be precipitated on the walls or intersection of the skeleton walls when the concentration of lead ions is saturated. The method described in this article shows the feasibility of formation of metal fluoride crystal by anodization of metal in a fluoride containing solution.

Electrochemical Properties of Graphite-based Electrodes for Redox Flow Batteries

  • Kim, Hyung-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.571-575
    • /
    • 2011
  • Graphite-based electrodes were prepared using synthetic graphite (MCMB 1028) or natural graphite (NG) powder using a dimensionally stable anode (DSA) as a substrate. Their electrochemical properties were investigated in vanadiumbased electrolytes to determine how to increase the durability and improve the energy efficiency of redox flow batteries. Cyclic voltammetry (CV) was performed in the voltage range of -0.7 V to 1.6 V vs. SCE at various scan rates to analyze the vanadium redox reaction. The graphite-based electrodes showed a fast redox reaction and good reversibility in a highly concentrated acidic electrolyte. The increased electrochemical activity of the NG-based electrode for the $V^{4+}/V^{5+}$ redox reaction can be attributed to the increased surface concentration of functional groups from the addition of conductive material that served as a catalyst. Therefore, it is expected that this electrode can be used to increase the power density and energy density of redox flow batteries.

Cost Policy Effects of Economic Feasibility of 1kw household PEMFC System (요금 정책이 PEMFC 시스템 경제성에 미치는 영향)

  • Kim, Ki-Young;Hwang, Nam-Sun;Kong, Min-Seok;Kim, Hee-Su;Oh, Si-Doek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.31-34
    • /
    • 2007
  • Fuel cell with high electric efficiency has many probabilities of commercial use. Especially, polymer electrolyte or proton exchange membrane fuel cell (PEMFC) which is a low operating temperature and has less influence on $CO_2$ concentration is considered the power generation system of small building and household. We calculated the optimal operational plans of 1 kW household PEMFC power system based on daily electric and heat demand patterns of various size of apartments. Calculated results show that the economic feasibility of PEMFC power system is very sensitive to the cost policy of electricity and natural gas.

  • PDF

Performance Characterization of Polymer Electrolyte Membrane Direct Methanol Fuel Cell on the Various Operation Conditions (운전조건에 따른 고분자 직접메탄올 연료전지 성능 특성)

  • Jung, Doo-Hwan;Lee, Chang-Hyeong;Shin, Dong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1409-1411
    • /
    • 1996
  • Direct Methanol Fuel Cell(DMFC) using Pt-Ru electrocatlayst and Nafion menbrane can provide high performance if operating conditions are well designed. In this study, operating temperature, pressure, and fuel flow rate were changed to obtain optimum operating conditions of DHFC single cell. Performance of DMFC were increased by the increase of operating temperature. The concentration of fuel methanol was 2.0M $CH_{3}OH$ and pressure difference of cathode and anode was 2 atm were showed maximum performance of DMFC single cell with showing the current density of 160 $mA/cm^2$ at 0.2V cell voltage.

  • PDF

Organic additive effects in physical and electrical properties of electroplated Cu thin film

  • Lee, Yeon-Seung;Lee, Yong-Hyeok;Gang, Seong-Gyu;Ju, Hyeon-Jin;Na, Sa-Gyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.48.1-48.1
    • /
    • 2010
  • Cu has been used for metallic interconnects in ULSI applications because of its lower resistivity according to the scaling down of semiconductor devices. The resistivity of Cu lines will affect the RC delay and will limit signal propagation in integrated circuits. In this study, we investigated the characteristics of electroplated Cu films according to the variation of concentration of organic additives. The plating electrolyte composed of $CuSO_4{\cdot}5H_2O$, $H_2SO_4$ and HCl, was fixed. The sheet resistance was measured with a four-point probe and the material properties were investigated with XRD (X-ray Diffraction), AFM (Atomic Force Microscope), FE-SEM (Field Emission Scanning Electron Microscope) and XPS (X-ray Photoelectron Spectroscopy). From these experimental results, we found that the organic additives play an important role in formation of Cu film with lower resistivity by EPD.

  • PDF

Electrochemical model for the simulation of solid oxide fuel cells (고체산화물연료전지의 시뮬레이션을 위한 전기화학모델)

  • Park, Joon-Guen;Lee, Shin-Ku;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.63-66
    • /
    • 2008
  • This study presents 0-dimensional model for solid oxide fuel cells(SOFCs). The physics of the cell and the simplifying assumptions are presented, and only hydrogen participates in the electrochemical reaction. The electrical potential is predicted using this model. The Butler-Volmer equation is used to describe the activation polarization and the exchange current density is changed according to the partial pressure of reactants and the temperature. The electrical conductivities of electrodes and an electrolyte are calculated for the ohmic polarization. Material characteristics and temperature affect those factors. Analysis of concentration polarization based on transport of gaseous species through porous electrodes is incorporated in this model. Both binary diffusion and Knudsen diffusion are considered as the diffusion mechanism. For validation, simulation results at this work are compared with our experimental results and numerical results by other researchers.

  • PDF