• Title/Summary/Keyword: electrolyte coating

Search Result 255, Processing Time 0.028 seconds

Cold Rolling Process for the Matrix Fabrication of the Mcfc (용융탄산염형 연료전지의 전해질 매트릭스에 관한 연구)

  • Park, Sang-Kill;Rho, Chang-Joo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.2
    • /
    • pp.125-131
    • /
    • 1991
  • Electrolyte matrix fabrication process can be classifed as hot pressing, tape casting, callendering, electrophoretic deposition. however, these have limits in practice. Hot pressing is cumbersome method, because of careful heating and cooling. Furthermore, the perfected tile is so fragile that it is difficult to fit in a cell. Therefore this method is not adequate for mass production of the electrolyte matrix. Using electrophoretic deposition method, a very thin matrix can be made, but many attempts of the electrolyte embeding were found to be failure. Tape casting and callendering methods are employed in most of the matrix fabrication for the present. But these methods require lots of water as a solvent, so that coating of the LiAlO sub(2) with electrolyte is difficult. Recently, hot roll milling method has been developed and the perfected matrix was proved to be free from crack. The method, however, needs a roller to make a matrix and a perfected matrix is carefully striped off from the cooled roller. Therefore, this method requires a long time due to the cooling process. The author proposes a cold rolling process. On this method, heated slurry of the LiAlO sub(2) mixed with binder, is rolled with a cold roller. The heated slurry dose not adhere to the roller, since contacted hot slurry is rapidly solidified. Therefore fabrication speed is increased, without getting rid of merits of the hot rolling process.

  • PDF

Characterization of (La,Sr))$MnO_3/Gd_{0.2}Ce_{0.8}O_{1.9}$ Interface with Citric Acid Contents and Sintering Temperature (시트르산의 양과 소결온도에 따른 (La,Sr)$MnO_3/Gd_{0.2}Ce_{0.8}O_{1.9}$ 계면특성)

  • 윤일영;윤희성;김병호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.1
    • /
    • pp.18-25
    • /
    • 1998
  • G $d_{0.2}$C $e_{0.8}$ $O_{1.9}$(CGO) for electrolyte and L $a_{0.5}$S $r_{0.5}$Mn $O_3$(LSM50) for cathode in Solid Oxide Fuel Cells(SOFC) were synthesized by citrate process. Specimens were prepared with sintering temperatures at 110$0^{\circ}C$, 120$0^{\circ}C$ and 130$0^{\circ}C$, which were fabricated by slurry coating with citric acid contents. Interfacial resistance was measured between cathode and electrolyte using AC-impedance analyzer. With various citric acid content, the degree of agglomeration for the initial particles changed. Also sintering temperature changed the particle size and the degree of densification of cathode. Factors affecting the interfacial resistance were adherent degree of the electrolyte and cathode, distribution of TPB(three phase boundaries, TPB i.e., electrolyte/electrode/gas phase area) and porosity of cathode. By increasing the sintering temperature, particle size and densification of the cathode were increased. And then, TPB area which occurs catalytic reaction was reduced and so interfacial resistance was increased.sed.sed.d.

  • PDF

Effect of process conditions on crystal structure of Al PEO coating. II. Bipolar and electrolyte (알루미늄 PEO 코팅의 결정상에 미치는 공정 조건에 대한 연구 II. Bipolar 펄스와 전해액)

  • Kim, Bae-Yeon;Ham, Jae-Ho;Lee, Deuk Yong;Kim, Yong-Nam;Jeon, Min-Seok;Kim, Kiyoon;Choi, Ji-Won;Kim, Sung Youp;Kim, Kwang Youp
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.2
    • /
    • pp.65-69
    • /
    • 2014
  • Crystallographic phases of Plasma electrolytic oxidized Al alloy, A1100, A5052, A6061, A6063, A7075, were investigated. Two types of electrolyte $Na_2Si_2O_3$ and Na2P2O7 were also compared. Bipolar pulse, $2000{\mu}sec$ with $400{\mu}sec+420V$ impulse and $300{\mu}sec$ - impulse were applied for 20 min. ${\alpha}-alumina$, ${\gamma}-alumina$, ${\eta}-alumina$, $Al_{4.95}Si_{1.05}O_{9.52}$, and $(Al_{0.9}Cr_{0.1})_2O_3$ were mainly observed. Si, component of electrolyte, were moved into the PEO layer by bipolar pulse. Glassy phase was also observed at the surface of $Na_2Si_2O_3$ electrolyte treated PEO layer, and increased with the Mg content of Al alloy. It is concluded that at first glassy phase was formed by the micro plasma, and the high temperature of plasma turns glassy phase to several crystalline phases. And we could expect that many other crystalline phase could be formed by PEO process.

Corrosion characteristics and interfacial contact resistances of TiN and CrN coatings deposited by PVD on 316L stainless steel for polymer electrolyte membrane fuel cell bipolar plates

  • Lee, Jae-Bong;Oh, In Hwan
    • Corrosion Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.171-178
    • /
    • 2013
  • In a polymer membrane fuel cell stack, the bipolar plate is a key element because it accounts for over 50% of total costs of the stack. In order to lower the cost of bipolar plates, 316L stainless steels coated with nitrides such as TiN and CrN by physical vapor deposition were investigated as alternative materials for the replacement of traditional brittle graphite bipolar-plates. For this purpose, interfacial contact resistances were measured and electrochemical corrosion tests were conducted. The results showed that although both TiN and CrN coatings decreased the interfacial contact resistances to less than $10m{\Omega}{\cdot}cm^2$, they did not significantly improve the corrosion resistance in simulated polymer electrolyte membrane fuel cell environments. A CrN coating on 316L stainless steel showed better corrosion resistance than a TiN coating did, indicating the possibility of using modified CrN coated metallic bipolar plates to replace graphite bipolar plates.

Ruthenium Oxide Nanoparticles Electrodeposited on the Arrayed ITO Nanorods and Its Application to Supercapacitor Electrode

  • Ryu, Ilhwan;Lee, Jinho;Park, Dasom;Yim, Sanggyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.296-296
    • /
    • 2013
  • Supercapacitor is a capacitor with extraordinarily high energy density, which basically consists of current collector, active material and electrolyte. Ruthenium oxide ($RuO_2$) is one of the most widely studied active materials due to its high specific capacitance and good electrical conductivity. In general, it is known that the coating of $RuO_2$ on nanoarchitectured current collector shows improved performance of energy storage device compared to the coating on the planar current collector. Especially, the surface structure with standing coaxial nanopillars are most desirable since it can provide direct paths for efficient charge transport along the axial paths of each nanopillars and the inter-nanopillar spacing allows easy access of electrolyte ions. However, well-known fabrication methods for metal or metal oxide nanopillars, such as the process using anodize aluminum oxide (AAO) templates, often require long and complicated nanoprocess.In this work, we developed relatively simple method fabricating indium tin oxide (ITO) nanopillars via sputtering. We also electrodeposited $RuO_2$ nanoparticles onto these ITO nanopillars and investigated its physical and electrochemical properties.

  • PDF

Characterization of Electro-Polymerized Polyaniline Film on the Cold Rolled Sheet in the Oxalic acid and Sodium Molybdate Electrolyte (옥살산과 몰리브덴산나트륨 전해액에서 냉연강판에 전해중합된 폴리아닐린 피막의 특성)

  • Lim, Ki-Young;Yoon, Jeong-Mo;Ki, Joon-Seo;Jang, Yong-Seok
    • Korean Journal of Materials Research
    • /
    • v.16 no.6
    • /
    • pp.386-393
    • /
    • 2006
  • Increasing environmental concerns require to solve the problem produced due to the use of heavy metals in coating formulations. Therefore, it is necessary to develop new coating strategy employing inherently conducting polymers such as polyaniline. Polyaniline is a conductive polymer that is synthesized by oxidation polymerization, and the electrochemical and chemical polymerization are possible for the oxidation of aniline. Electrochemical oxidation polymerization produces a fine surface and although voltage control is more convenient, it require electrolytic cells, and elaborate thin film can be acquired with the polymerization. Polyaniline films were electro-polymerized on cold rolled sheets using the galvanostat mode in the oxalic acidaniline-sodium molybdate electrolyte. The structure and properties of polyaniline film were studied using Potentiostat/Galvanostat 263A, FE-SEM,, AFM, SST, Colorimetry. A high corrosion resistance of polyaniline film was observed with an increase of corrosion potential by $500{\sim}600$ mV for the substrate covered with polyaniline.

Electrochemical Properties of LiFePO4 Cathode Materials for Lithium Polymer Batteries (리튬폴리머전지용 정극활물질 LiFePO4의 전기화학적 특성)

  • Kong Ming-Zhe;Kim Hyun-Soo;Gu Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.519-523
    • /
    • 2006
  • $LiFePO_4$ has been received attention as a potential cathode material for the lithium secondary batteries. In our study, $LiFePO_4$ cathode active materials were synthesized by a solid-state reaction. It was modified by coating $TiO_2$ and carbon in order to enhance cyclic performance and electronic conductivity. $TiO_2$ and carbon coatings on $LiFePO_4$ materials enhanced the electronic conductivity and its charge/discharge capacity. For lithium polymer battery applications, $LiFePO_4$/solid polymer electrolyte (SPE)/Li and $LiFePO_{4}-TiO_{2}/SPE/Li$ cells were characterized by a cyclic voltammetry and charge/discharge cycling. The electrode with $LiFePO_{4}-carbon-TiO_{2}$ in PVDF-PC-EC-$LiClO_{4}$ electrolyte showed promising capacity of above 100 mAh/g at 1C rate.

Efficiency Improvement of Metal-Mesh Electrode Type Photoelectrochemical Cells by Oxides Layer Coatings (산화물박막 증착에 의한 금속 메쉬전극 구조 광전기화학셀의 효율 개선에 관한 연구)

  • Han, Chi-Hwan;Park, Seon-Hee;Sung, Youl-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.584-587
    • /
    • 2011
  • In this work, the $TiO_2$ and $SnO_2$ thin films as blocking layers were coated directly onto the metal-mesh electrode surface to prevent unnecessary inflow of back-transfer electrons from the electrolyte ($I^-/I_3^-$) to the metal-mesh electrode. The DSCs were fabricated with working electrode of SUS mesh coated with blocking $TiO_2$ and $SnO_2$ layers, dye-attached mesoporous $TiO_2$ film, gel electrolyte and counter electrode of Pt-deposited F:$SnO_2$. From the experimental result, it was ascertained that the efficiency of metal electrode coated with $TiO_2$ by Dip-coating was superior to that of metal electrode coated with $SnO_2$ by Dip-coating and screen printing with the results of experiments. The photo-current conversion efficiency of the cell obtained from optimum fabrication condition was 3% ($V_{oc}$=0.61V, $J_{sc}$=11.64 mA/$cm^2$, ff=0.64) under AM1.5, 100 mW/$cm^2$ illumination.

A Study on the Mechanism for the Formation of Partices in electroless Ni Composite Coating(II) (무전해 Ni 복합도금 과정에서 분말의 공석기구에 대한 연구(II))

  • 이원해;이승평
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.2
    • /
    • pp.78-87
    • /
    • 1989
  • Mechanism of formation of electroless composite coatings is similar to that of electrodeposited composite coating, but the amount of particles entraped in electroless coating is higher that the one of electrodeposited coatings. The methol of entrapment by the metal for SiC and Al2O3 particles is different from that for WC particles. In the former case the particles are gracually engulfed by the depositing metal, wheran with WC a metal envelope is rapidly fomed around each particles. This difference can be attributed to the difference in electrical resistivity of the particles. Inclusion density of SiC and Al2O3 particles during copeposition depend on the particle size, agitation condition, vabration conditions and electrolyte temperatures.

  • PDF

Development of $YSZ/La_0.85S_r0.15MnO_3$ Composite Electrodes for Solid Oxide Fuel Cells (고체산화물 연료전지용 $YSZ/La_0.85S_r0.15MnO_3$계 복합전극의 개발)

  • 윤성필;현상훈;김승구;남석우;홍성안
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.982-990
    • /
    • 1999
  • YSZ/LSM composite cathode was fabricated by dip-coating of YSZ sol on the internal pore surface of a LSM cathode followed by sintering at low temperature (800-100$0^{\circ}C$) The YSZ coating significantly increased the TPB(Triple Phase Boundary) where the gas the electrode and the electrolyte were in contact with each other. Sinter the formation of resistive materials such as La2Zr2O7 or SrZrO3 was prevented due to the low processing temperature and TPB was increased due to the YSZ film coating the electrode resistance (Rel) was reduced about 100 times compared to non-modified cathode. From the analysis of a.c impedance it was shown that microstructural change of the cathode caused by YSZ film coating affected the oxygen reduction reaction. In the case of non-modified cathode the RDS (rate determining step) was electrode reactions rather than mass transfer or the oxygen gas diffusion in the experimental conditions employed in this study ($600^{\circ}C$-100$0^{\circ}C$ and 0,01-1 atm of Po2) for the YSZ film coated cathode however the RDS involved the oxygen diffusion through micropores of YSZ film at high temperature of 950-100$0^{\circ}C$ and low oxygen partial pressure of 0.01-0.03 atm.

  • PDF