• 제목/요약/키워드: electroless chemical plating

검색결과 89건 처리시간 0.025초

팔라듐-은 막반응기를 이용한 메탄의 부분산화반응 (Partial Oxidation of Methane in Palladium-silver Alloy Membrane Reactor)

  • 최태호;김광제;문상진;서정철;백영순
    • 공업화학
    • /
    • 제16권5호
    • /
    • pp.641-647
    • /
    • 2005
  • 메탄의 부분산화반응은 수소 제조의 중요한 반응 중의 하나이다. 무전해 도금방법에 의해 제조된 팔라듐-은 막을 막반응기(membrane reactor)로서 메탄의 부분산화반응에 적용하여 반응온도, $O_2/CH_4$ 몰비, $CH_4$ 공급속도, $N_2$ 운반 가스 흐름속도 등의 변화에 따라 실험을 수행하였다. 막반응기의 메탄 전환율은 알루미나에 담지된 니켈 촉매를 사용하는 반응조건하에서 $350{\sim}730^{\circ}C$의 반응온도에 따라 증가하는 경향을 보였으며, 특히 $730^{\circ}C$$O_2/CH_4$ 몰비 0.5에서 메탄 전환율과 CO 선택도가 가장 높았다. 막반응기의 메탄 전환율은 전통적인 관형반응기와 비교한 결과 반응조건에 따라 10~40% 정도 높았다.

Ni-Pd-CNT Nanoalloys에서 성장한 α-Ga2O3의 특성분석 (Characterization of Alpha-Ga2O3 Epilayers Grown on Ni-Pd and Carbon-Nanotube Based Nanoalloys via Halide Vapor Phase Epitaxy)

  • 차안나;이기업;김형구;성채원;배효정;노호균;;하준석
    • 마이크로전자및패키징학회지
    • /
    • 제28권4호
    • /
    • pp.25-29
    • /
    • 2021
  • 본 연구에서는 HVPE 방법을 사용하여 Ni-Pd and Carbon-Nanotube nanoalloys (Ni-Pd-CNT) 위에 α-Ga2O3을 성장시켜 Ni-Pd-CNT에 따른 효과를 확인하였다. 그 결과, 무전해 Ni 도금 시간 40초에서 성장한 α-Ga2O3 에피층의 두께는 11 ㎛로 확인되었다. 또한, α-Ga2O3 에피층의 표면 형태는 균열 발생 없이 기판에 대한 우수한 접착력을 보여주었다. 결과적으로, 성장과정에서 발생한 수평 성장에 의해 α-Ga2O3 대의 비대칭면인 ($10{\bar{1}}4$) FWMH 값을 크게 감소할 수 있었다.

Ni Nanoparticle Anchored on MWCNT as a Novel Electrochemical Sensor for Detection of Phenol

  • Wang, Yajing;Wang, Jiankang;Yao, Zhongping;Liu, Chenyu;Xie, Taiping;Deng, Qihuang;Jiang, Zhaohua
    • Nano
    • /
    • 제13권11호
    • /
    • pp.1850134.1-1850134.10
    • /
    • 2018
  • Increasing active sites and enhancing electric conductivity are critical factors to improve sensing performance toward phenol. Herein, Ni nanoparticle was successfully anchored on acidified multiwalled carbon nanotube (a-MWCNT) surface by electroless plating technique to avoid Ni nanoparticle agglomeration and guarantee high conductivity. The crystal structure, phase composition and surface morphology were characterized by XRD, SEM and TEM measurement. The as-prepared Ni/a-MWCNT nanohybrid was immobilized onto glassy carbon electrode (GCE) surface for constructing phenol sensor. The phenol sensing performance indicated that Ni/a-MWCNT/GCE exhibited an amazing detection performance with rapid response time of 4 s, a relatively wide detection range from 0.01 mM to 0.48 mM, a detection limit of $7.07{\mu}M$ and high sensitivity of $566.2{\mu}A\;mM^{-1}\;cm^{-2}$. The superior selectivity, reproducibility, stability and applicability in real sample of Ni/a-MWCNT/GCE endowed it with potential application in discharged wastewater.

Fabrication of Electro-active Polymer Actuator Based on Transparent Graphene Electrode

  • Park, Yunjae;Choi, Hyonkwang;Im, Kihong;Kim, Seonpil;Jeon, Minhyon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.386.1-386.1
    • /
    • 2014
  • The ionic polymer-metal composite (IPMC), a type of electro-active polymer material, has received enormous interest in various fields such as robotics, medical sensors, artificial muscles because it has many advantages of flexibility, light weight, high displacement, and low voltage activation, compare to traditional mechanical actuators. Mostly noble metal materials such as gold or platinum were used to form the electrode of an IPMC by using electroless plating process. Furthermore, carbon-based materials, which are carbon nanotube (CNT) and reduced graphene-CNT composite, were used to alter the electrode of IPMC. To form the electrode of IPMC, we employ the synthesized graphene on copper foil by chemical vapor deposition method and use the transfer process by using a support of PET/silicone film. The properties of graphene were evaluated by Raman spectroscopy, UV/Vis spectroscopy, and 4-point probe. The structure and surface of IPMC were analyzed via field emission scanning electron microscope. The fabricated IPMC performance such as displacement and operating frequency was measured in underwater.

  • PDF

A Capillary Electrochromatographic Microchip Packed with Self-Assembly Colloidal Carboxylic Silica Beads

  • Jeon, In-Sun;Kim, Shin-Seon;Park, Jong-Man
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권4호
    • /
    • pp.1135-1140
    • /
    • 2012
  • An electrochromatographic microchip with carboxyl-group-derivatized mono-disperse silica packing was prepared from the corresponding colloidal silica solution by utilizing capillary action and self-assembly behavior. The silica beads in water were primed by the capillary action toward the ends of cross-patterned microchannel on a cyclic olefinic copolymer (COC) substrate. Slow evaporation of water at the front of packing promoted the self-assembled packing of the beads. After thermally binding a cover plate on the chip substrate, reservoirs for sample solutions were fabricated at the ends of the microchannel. The packing at the entrances of the microchannel was silver coated to fix utilizing an electroless silver-plating technique to prevent the erosion of the packed structure caused by the sudden switching of a high voltage DC power source. The electrochromatographic behavior of the microchip was explored and compared to that of the microchip with bare silica packing in basic borate buffer. Electrophoretic migration of Rhodamine B was dominant in the microchip with the carboxyl-derivatized silica packing that resulted in a migration approximated twice as fast, while the reversible adsorption was dominant in the bare silica-packed microchip. Not only the faster migration rates of the negatively charged FITC-derivatives of amino acids but also the different migration due to the charge interaction at the packing surface were observed. The electrochromatographic characteristics were studied in detail and compared with those of the bare silica packed microchip in terms of the packing material, the separation potential, pH of the running buffer, and also the separation channel length.

Pd 코팅 된 중공사형 La0.1Sr0.9Co0.2Fe0.8O3-δ 촉매의 제조 및 미량 산소 제거 특성 연구 (Preparation of Pd Coated Hollow Fiber-Type La0.1Sr0.9Co0.2Fe0.8O3-δ Catalyst and Study on Removal Characteristics of Minute Oxygen)

  • 정병준;이홍주;김민광;이승환;박정훈
    • Korean Chemical Engineering Research
    • /
    • 제57권6호
    • /
    • pp.774-780
    • /
    • 2019
  • 본 연구에서는 저온에서 매립지 가스(LFG)하에서 메탄의 완전 산화 특성 분석을 위한 고성능 Pd 코팅 $La_{0.1}Sr_{0.9}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF-1928)촉매를 개발하였다. LSCF-1928 촉매를 분말형과 중공사형으로 성형한 후 중공사형의 표면을 무전해도금법으로 Pd를 코팅하였다. 성형된 촉매는 TPR을 통해 촉매에 흡착 된 산소종과 그 흡착 량을 분석하였고, SEM을 통해 중공사형 기공구조를 확인하였으며, XRD를 통해 촉매의 안정성을 확인하였다. 메탄 산화 실험 결과 LSCF-1928 촉매의 메탄 완전산화 온도는 $475^{\circ}C$ 이었으나, Pd코팅 된 LSCF-1928 촉매는 이보다 낮았으며, $O_2$ 전화 율 또한 일반 LSCF-1928 촉매보다 Pd 코팅 LSCF-1928 촉매가 높았음을 확인하였다.

촉매에 따른 다양한 탄소나노구조체 합성 (Fabrication of various carbon nanostructures by using different catalysts)

  • 최강호;유인준;이희수;이규환;임동찬
    • 한국결정성장학회지
    • /
    • 제20권3호
    • /
    • pp.133-140
    • /
    • 2010
  • 탄소 섬유소재는 가벼우면서고 강건한 특성과 화학적 안정성 등으로 인해 항공기, 자동차, 레저, 우주항공, 풍력, 연료전지, 방위 산업 등의 분야를 비롯하여 최근에는 다양한 산업용 복합재료 및 보강용 분야에서 많이 사용되고 있다. 본 연구에서는 탄소섬유의 기능성 향상 및 다양한 응용 분야 확대를 위하여 물리적, 화학적 특성이 우수한 탄소나노튜브와 같은 다양한 탄소나노구조체를 탄소섬유상에 하이브리드화 하는 연구를 진행하였다. ELP(Electroless plating)법을 이용하여 탄소섬유 표면처리 및 촉매 입자 형성을 동시에 진행하였으며, Thermal CVD법을 이용하여 탄소나노구조체를 형성한 결과, 탄소섬유상 Pd/Ni 복합 촉매의 비율에 따라서 탄소나노튜브, 탄소나노필라멘트 등 다양한 형태의 탄소섬유상 탄소나노구조체가 형성되는 것을 알 수 있었다. Pd촉매의 비율이 높을 수록 다중벽 탄소나노튜브(Multiwall carbon naotube)의 생성 비율이 높아지고, Ni촉매의 비율이 상대적으로 증가할 수록 탄소나노필라멘트(Carbon nanofilament)의 생성 비율이 높아짐을 알 수 있었다.

백금 담지 다공성 산화인듐 나노입자 구조를 이용한 수소센서 (Hydrogen sensor using Pt-loaded porous In2O3 nanoparticle structures)

  • 윤성도;명윤;나찬웅
    • 한국표면공학회지
    • /
    • 제56권6호
    • /
    • pp.420-426
    • /
    • 2023
  • We prepared a highly sensitive hydrogen (H2) sensor based on Indium oxides (In2O3) porous nanoparticles (NPs) loaded with Platinum (Pt) nanoparticle in the range of 1.6~5.7 at.%. In2O3 NPs were fabricated by microwave irradiation method, and decorations of Pt nanoparticles were performed by electroless plating on In2O3 NPs. Crystal structures, morphologies, and chemical information on Pt-loaded In2O3 NPs were characterized by grazing-incident X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, respectively. The effect of the Pt nanoparticles on the H2-sensing performance of In2O3 NPs was investigated over a low concentration range of 5 ppm of H2 at 150-300 ℃ working temperatures. The results showed that the H2 response greatly increased with decreasing sensing temperature. The H2 response of Pt loaded porous In2O3 NPs is higher than that of pristine In2O3 NPs. H2 gas selectivity and high sensitivity was explained by the extension of the electron depletion layer and catalytic effect. Pt loaded porous In2O3 NPs sensor can be a robust manner for achieving enhanced gas selectivity and sensitivity for the detection of H2.

NF막 제조 및 응용공정 (Preparation and Application of Nanofiltration Membranes)

  • 이규호;오남운;제갈종건
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1998년도 제6회 하계 Workshop (98 한국막학회, 국립환경연구원 국제 Workshop, 수자원 보전과 막분리 공정)
    • /
    • pp.135-153
    • /
    • 1998
  • Nanofiltration (NF) is a recently introduced term in membrane separation. In 1988, Eriksson was one of the first authors using the word 'nanofiltration' explicitly. Some years before, FilmTech started to use this term for their NF50 membrane which was supposed to be a very loose reverse osmosis membrane or a very tight ultrafiltration membrane. Since then, this term has been introduced to indicate a specific boundary of membrane technology in between ultrafiltration and reverse osmosis. The application fields of the NF membranes are very broad as follows: Demeneralizing water, Cleaning up contaminated groundwater, Ultrapure water production, Treatment of effleunts containing heavy metals, Offshore oil platforms, Yeast production, Pulp and paper mills, Textile production, Electroless copper plating, Cheese whey production, Cyclodextrin production, Lactose production. The earliest NF membrane was made by Cadotte et al, using piperazine and trimesoyl chloride as monomers for the formation of polyamide active layer of the composite type membrane. They coated very thin interfacially potymerized polyamide on the surface of the microporous polysulfone supports. The NF membrane exhibited low rejections for monovalent anions (chloride) and high rejections for bivalent anions (sulphate). This membrane was called NS300. Some of the earliest NF membranes, like the NF40 membrane of FilmTech, the NTR7250 of Nitto-Denko and the UTC20 and UTC60 of Toray, are formed by a comparable synthesis route as the NS300 membrane. Commercially available NF membranes nowadays are as follows: ASP35 (Advanced Membrane Technology), MPF21; MPF32 (Kiryat Weizmann), UTC20; UTC60; UTC70; UTC90 (Toray), CTA-LP; TFCS (Fluid Systems), NF45; NF70 (FilmTec), BQ01; MX07; HG01; HG19; SX01; SX10 (Osmonics), 8040-LSY-PVDI (Hydranautics), NF CA30; NF PES 10 (Hoechst), WFN0505 (Stork Friesland). The typical ones among the commercially available NF membranes are polyamide composite membrane consisting of interfacially polymerized polyamide active layer and microporous support. While showing high water fluxes and high rejections of multivalent ions and small organic molecules, these membranes have relatively low chemical stability. These membranes have low chlorine tolerance and are unstable in acid or base solution. This chemical instability is appearing to be a big obstacle for their applications. To improve the chemical stability, we have tried, in this study, to prepare chemically stable NF membranes from PVA. The ionomers and interfacially polymerized polyamide were used for the modification of'the PVA membranes. For the detail study of the active layer, homogeneous NF membranes made only from active layer materials were prepared and for the high performance, composite type NF membranes were prepared by coating the active layer materials on microporous polysulfone supports.

  • PDF