• Title/Summary/Keyword: electrodeposition copper foil

Search Result 10, Processing Time 0.027 seconds

The Effect of Arabic Gum on the Copper Electrodeposition using Titanium Substrate (티타늄 기지을 이용한 구리 전해도금 시 Arabic Gum 첨가제의 영향)

  • Woo, Tae-Gyu;Park, Il-Song;Lee, Hyun-Woo;Seol, Kyeong-Won
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.725-730
    • /
    • 2006
  • The purpose of this study is to identify the effect of additives during copper electrodeposition. Additives such as arabic gum, chloride ions and glue were used in this study. Electrochemical experiments allied to SEM and roughness examination were performed to characterize of the copper foil in the presence of additives. In the production of electrodeposited copper foil, the surface roughness and grain size of the copper foil can be controlled by addition additives. on this study, the more uniform and hemispherical copper crystals are during the initial stages, the smaller crystal size and surface roughness of copper foil are. The surface roughness of copper foil electrodeposited at the current density of 500 $mA/cm^2$ under galvanostatic mode for 60 seconds has a minimum value of 0.136 ${\mu}$m when adding 2 ppm of arabic gum.

The Effect of Hydroxy Ethyl Cellulose(HEC) on the Surface Morphology and Mechanical Characteristis of Copper Electrodeposition (구리 전해도금 시 표면형상과 기계적 특성에 미치는 HEC효과)

  • Woo, Tae-Gyu;Park, Il-Song;Lee, Hyun-Woo;Seol, Kyeong-Won
    • Korean Journal of Materials Research
    • /
    • v.16 no.11
    • /
    • pp.710-714
    • /
    • 2006
  • The purpose of this study is to identify the effect of additives and composition on copper surface morphology and mechanical characteristics by copper electrodeposition. Additives such as hydroxy ethyl cellulose(HEC), chloride ion were used in this study. Electrochemical experiments allied to SEM, XRD, AFM and four- point probe were performed to characterize the morphology and mechanical characters of copper in the presence of additives. Among various electrodeposition conditions, the minimum surface roughness of copper foil was obtained when electrodeposited at the current density of 200 mA/$cm^2$ for 68 seconds with 2 ppm of HEC. The minimum value of surface roughness(Rms) was 107.6 nm. It is copper foil is good for electromigration inhibition due to preferential crystal growth of Cu (111) deposited in the electrolyte containing chloride ions(10 ppm) and HEC(1 ppm).

Effect of Pulse and Pulse-Reverse Current on Surface Morphology and Resistivity of Electrodeposited Copper (정펄스 및 역펄스 방법을 이용하여 구리 전해도금 시 전착층의 표면 형상과 고유저항에 미치는 효과)

  • Woo, Tae-Gyu;Park, Il-Song;Seol, Kyeong-Won
    • Korean Journal of Materials Research
    • /
    • v.17 no.1
    • /
    • pp.56-59
    • /
    • 2007
  • Recently, requirement for the ultra thin copper foil increases with smaller and miniaturized electronic components. In this study, we evaluated the surface morphology, crystal phase ana surface roughness of the copper film electrodeposited by pulse method without using additives. Homogeneous and dense copper crystals were formed on the titanium substrate, and the optimum condition was 25% duty cycle. Moreover, the surface roughness(Ra), $0.295{\mu}m$, is the smallest value in this condition. It is thought that this copper foil is good for electromigration inhibition due to the preferential crystal growth of Cu (111)

Effect of Kind and Thickness of Seed Metal on the Surface Morphology of Copper Foil (Seed 금속의 종류와 두께에 따른 구리 전착층의 표면형상에 미치는 영향)

  • Woo, Tae-Gyu;Park, Il-Song;Seol, Kyeong-Won
    • Korean Journal of Materials Research
    • /
    • v.17 no.5
    • /
    • pp.283-288
    • /
    • 2007
  • This study aimed to investigate the effects of the seed layer with copper electroplating on the surface morphology of copper foil. Three kinds of seed metal such as platinum, palladium, Pt-Pd alloy were used in this study. Electrodeposition was carried out with the constant current density of 200 $mA/cm^2$ for 68 seconds. Electrochemical experiments, in conjunction with SEM, XRD, AFM and four-point probe, were performed to characterize the morphology and mechanical characteristics of copper foil. Large particles were observed on the surface of the copper deposition layer when a copper foil was electroplated on the 130 nm thickness of Pd, Pt-Pd seed layer. However, a homogeneous surface, low resistivity was obtained when the 260 nm thickness of Pt, Pt-Pd alloy seed layer was used. The minimum value of resistivity was 2.216 ${\mu}{\Omega}-cm$ at the 260 nm thickness of Pt-Pd seed layer.

Study on Characteristics of Electrodeposited Thin Copper Film by Inorganic Additives in Pyrophosphate Copper Plating Bath (피로인산동욕의 무기첨가제에 의한 전해동박의 특성에 관한 연구)

  • Koo, Seokbon;Hur, Jinyoung;Lee, Hongkee
    • Journal of Surface Science and Engineering
    • /
    • v.47 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • The copper deposit on steel plate was prepared by pyrophosphate copper plating solution made with variation of inorganic additive. $NH_4OH$ and $NH_4NO_3$ were used as inorganic additives. The copper layer characteristics - tensile strength, crystallite size and crystal orientation - were evaluated by X-ray diffraction and Universal Test Machine. The presence of ammonium nitrate results in reduction of average roughness value from $0.08{\mu}m$ to $0.03{\mu}m$. In pyrophosphate copper plating solution without Inorganic additive, tensile strength of electrodeposit copper foil was reduced from 600 MPa to 180 MPa after 7 days aging. However, when adding ammonium nitrate, there was almost no change of tensile strength, intensity of crystal orientation - (111), (200) and (220) - and crystallite size (2~30 nm).

Copper Sulfide Nanowires for Solar Cells (태양전지용 $Cu_2S$ 나노와이어의 제작 및 특성분석)

  • Lim, Young-Seok;Kang, Yoon-Mook;Kim, Won-Mok;Kim, Dong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.166-169
    • /
    • 2006
  • We fabricated hexagonal copper sulfide $Cu_2S$ nanowires to obtain a larger contact area of $Cu_2S/CdS$ solar cell. Copper sulfide nanowires were grown on Cu foil at room temperature by gas-sol id reaction. The size, density and shape of nanowires seemed to be affected by the change or reaction time temperature, crystallographic orientation of Cu foil, and molar ratio of the mixed gas. We controled the length and the diameter of the nanowires and we obtained suitable nanowire arrays which has fitting size for uniform deposition with n-type CdS. CdS layer was deposited on the nanowire array by electrodeposition and it seemed to be uniform. The $Cu_2S/CdS$ nanowires/CdS junction showed diode characteristics, A large contact area is expected with the $Cu_2S/CdS$ nanowire structure as compared with the $Cu_2S/CdS$ thin film.

  • PDF

The Effects of Electrolyte Compositions on the Property of Copper Electrodeposited Layer (구리전착층의 물성에 미치는 전해액 조성의 영향)

  • Park, Eun-Kwang;Lee, Man-Hyung;Woo, Tae-Gyu;Park, Il-Song;Jung, Kwang-Hee;Seol, Kyeong-Won
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.740-747
    • /
    • 2009
  • The purpose of this study is to identify the effect of electrolyte compositions on electrodeposited copper foil. First of all, the polyimide substrate was pretreated with plasma. Finally, copper foil was deposited on a Cu/Ni/Polyimide substrate using the electroplating technique. As the quantity of Cu increased, preferred orientations changed into (111). Increasing sulfuric acid, on the other hand, brought down the preferred orientation of (111). The lowest sheet resistance, surface roughness, and fine adhesion were detected when the ratio of $Cu^{2+}$ and $H_2SO_4$ is 50:50(g/l).

Influence of Incorporated Impurities on the Evolution of Microstructure in Electro-Deposited Copper Layer (혼입불순물이 구리 도금층의 미세조직변화에 미치는 영향)

  • Koo, Seok-Bon;Jeon, Jun-Mi;Lee, Chang-Myeon;Hur, Jin-Young;Lee, Hong-Kee
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.4
    • /
    • pp.191-196
    • /
    • 2018
  • The self-annealing which leads evolution of microstructure in copper electroplating layers at room temperature occurs after forming deposition layer. During the process, crystal orientation, size and sheet resistance of plating layer change. Lastly, it causes the change of physical and mechanical characteristics such as a tensile strength of plating layer. In this study, the variation of incorporated impurities, microstructure and sheet resistance of copper plating layer formed by electroplating are measured with and without inorganic additives during the self-annealing. In case of absence of inorganic additives, the copper layer presents strong total intensity of incorporated impurities. During the self-annealing, such width of reduction was significant. Moreover, microstructure and crystal size are increased while the tensile strength is decreased noticeably. On the other hand, in the presence of inorganic additives, there is no observable distinction in the copper plating layer. According to the observation on movements of the incorporated impurities in electrodeposition copper layer, within 12 hours the impurities are continuously shifted from inside of the plating layer to its surface after as-deposited electroplating. Within 24 hours, except for the small portion of surface layer, it is considered that most of the microstructure is transformed.

The Effect of Various Electrolyte Concentrations on Surface and Electrical Characteristic of the Copper Deposition Layer at Anodizing of Titanium Anode (티타늄 음극기지의 양극산화 전해질 농도에 따른 구리전착층 표면 및 전기적 특성에 미치는 효과)

  • Lee, Man-Hyung;Park, Eun-Kwang;Woo, Tae-Gyu;Park, Il-Song;Yoon, Young-Min;Seol, Kyeong-Won
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.11
    • /
    • pp.747-754
    • /
    • 2008
  • Recently, the requirement for the ultra thin copper foil increases with smaller and miniaturized electronic components. Therefore, it is important to examine the surface state of substrate depending on the processing parameter during the anodic oxidation. This study investigated the effect of the various electrolyte concentrations on anodizing of titanium anode prior to copper electrodeposition. Different surface morphology of anodized titanium was obtained at different electrolytic concentration 0.5 M to 3.0 M. In addition, the effect that the surfaces and the electrical characteristics on the electrodeposited copper layer was observed. In this study, surface anodized in the group containing 0.5M $H_2SO_4$ shows more uniform copper crystals with low surface roughness. the surface roughness and sheet resistance for 0.5M $H_2SO_4$ group were $1.353{\mu}m$ and $0.104m{\Omega}/sq$, respectively.

The Effects of Levelers on Electroplating of Thin Copper Foil for FCCL (전기도금법을 이용한 FCCL용 구리박막 제조시 레벨러의 영향 연구)

  • Kang, In-Seok;Koo, Yeon-Soo;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.2
    • /
    • pp.67-72
    • /
    • 2012
  • In recent days, the wire width of IC is narrowed and the degree of integration of IC is increased to obtain the higher capacity of the devices in electronic industry. And then the surface quality of FCCL(Flexible Copper Clad Laminate) became increasingly important. Surface defects on FCCL are bump, scratch, dent and so on. In particular, bumps cause low reliability of the products. Even though there are bumps on the surface, if leveling characteristic of plating solution is good, it does not develop significant bump. In this study, the leveling characteristics of additives are investigated. The objective of study is to improve the leveling characteristic and reduce the surface step through additives and plating conditions. The additives in the electrodeposition bath are critical to obtain flat surface and free of defects. In order to form flat copper surface, accelerator, suppressor and leveler are added to the stock solution. The reason for the addition of leveler is planarization surface and inhibition of the formation of micro-bump. Levelers (SO(Safranin O), MV(Methylene Violet), AB(Alcian Blue), JGB(Janus Green B), DB(Diazine Black) and PVP(Polyvinyl Pyrrolidone) are used in copper plating solution to enhance the morphology of electroplated copper. In this study, the nucleation and growth behavior of copper with variation of additives are studied. The leveling characteristics are analyzed on artificially fabricated Ni bumps.