• Title/Summary/Keyword: electrode roughness

Search Result 231, Processing Time 0.031 seconds

Effect of Ti Buffer Layer Thickness on the Electrical and Optical Properties of In2O3/Ti bi-layered Films (Ti 완충층 두께에 따른 In2O3/Ti 적층박막의 전기적, 광학적 특성 변화)

  • Moon, Hyun-Joo;Jeon, Jae-Hyun;Gong, Tae-Kyung;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.6
    • /
    • pp.296-299
    • /
    • 2015
  • $In_2O_3/Ti$ bi-layered films were deposited on glass substrate at room temperature with radio frequency (RF) and direct current (DC) magnetron sputtering to consider the effect of Ti buffer layer on the electrical and optical properties. In a comparison of figure of merit, $In_2O_3$ 90 nm/Ti 10 nm thin films show the higher opto-electrical performance of $3.0{\times}10^{-4}{\Omega}^{-1}$ than that of the $In_2O_3$ single layer films ($2.6{\times}10^{-4}{\Omega}^{-1}$). From the observed results, it is supposed that the $In_2O_3\;90nm/TiO_2$ 10 nm bi-layered films may be an alternative candidate for transparent electrode in a transparent thin film transistor device.

Effect of the structural and electrical characteristics of TCO thin films on the performance of OLED devices (TCO 박막의 구조 및 전기적 특성에 따른 OLED 소자의 특성)

  • Lee, Bong-Kun;Lee, Yu-Lim;Lee, Kyu-Mann
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.270-270
    • /
    • 2010
  • OLED device is one of the most attractive and alternative display components, which stems primarily from the self-emission, large intrinsic viewing angle, and fast switching speed. However, because of its relatively short history of development, much remains to be studied in terms of its basic device physics, manufacturing processes, and reliability etc. Especially among several issues, it should be noted that the device characteristics are very sensitive to the surface properties of transparent conducting oxide (TCO) electrode materials. In this study, we have investigated the performance of OLED devices as a function of sheet resistance and surface roughness of TCO thin films. For this purpose, ITO and IZO thin films were deposited by r. f. magnetron sputtering under various ambient gases (Ar, Ar+O2 and Ar+H2, respectively). The crystal structure and surface morphology were examined by using XRD and FESEM. Also, electrical and optical properties were Investigated.

  • PDF

Preparation and Characterization of Electrodeposited Cadmium and Lead thin Films from a Diluted Chloride Solution

  • Sulaymon, Abbas Hamid;Mohammed, Sawsan A.M.;Abbar, Ali Hussein
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.115-127
    • /
    • 2014
  • Cd-Pb thin films were electrodeposited from a diluted chloride solution using stainless steel rotating disc electrode. The linear sweep voltammograms of the single metallic ions show that electrodeposition of these ions was mass transfer control due to the plateau observed for different rotations at concentration (50 and 200 ppm). The voltammograms of binary system elucidate that electrodeposition process always start at cathodic potential located between the potential of individual metals. Currents transients measurements, anodic linear sweep voltammetry (ALSV) and atomic force microscopy (AFM) were used to characterize the electrocryatalization process and morphology of thin films. ALSV profiles show a differentiation for the dissolution process of individual metals and binary system. Two peaks of dissolution Cd-Pb film were observed for the binary system with different metal ion concentration ratios. The model of Scharifker and Hills was used to analyze the current transients and it revealed that Cd-Pb electrocrystalization processes at low concentration is governed by three-dimensional progressive nucleation controlled by diffusion, while at higher concentration starts as a progressive nucleation then switch to instantaneous nucleation process. AFM images reveal that Cd-Pb film electrodeposited at low concentration is more roughness than Cd-Pb film electrodeposited at high concentrated solution.

Antifuse with Ti-rich barium titanate film and silicon oxide film (과잉 Ti 성분의 티탄산 바륨과 실리콘 산화막으로 구성된 안티퓨즈)

  • 이재성;이용현
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.7
    • /
    • pp.72-78
    • /
    • 1998
  • This paper is focused on the fabrication of reliable novel antifuse, which could operate at low voltage along with the improvement in OFF and ON-state properties. The fabricated antifuse consists of Al/BaTi$_{2}$O$_{3}$/SiO$_{2}$/TiW-silicide structure. Through the systematic analyses for bottom metal and the intermetallic insulator, material and electri cproperties were investiaged. TiW-silicide as the bottom electrode had smooth surface with average roughness of 11.angs. at 10X10.mu.m$^{2}$ and was bing kept as-deposited SiO$_{2}$ film stable. Amorphous BaTi$_{2}$O$_{3}$ film as the another insulator was chosen because of its low breakdown strength (2.5MV/cm). breakdown voltage of antifuse is remarkably reduced by using BaTi$_{2}$O$_{3}$ film, and leakage current of that maintained low level due to the SiO$_{2}$ film. Low ON-resistance (46.ohm./.mu.m$^{2}$) and low programming voltage(9.1V) can be obtained in theses antifuses with 220.angs. double insulator layer and 19.6X10$^{-6}$ cm$^{2}$ area, while keeping sufficient OFF-state reliability (less than 1nA).

  • PDF

Machining Characteristics According to the Thickness Change When Wire-cut Electrical Discharge Machining of Tungsten Carbide (초경합금재 와이어컷 방전가공시 두께변화에 따른 가공 특성)

  • 이재명;김원일;이윤경;왕덕현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.820-823
    • /
    • 2000
  • The characteristics of wire deflection, surface roughness and roundness were observed on changing discharge time for electrical discharge machining(EDM) of tungsten carbide in various conditions of thickness. The wire deflection was decreased as increasing discharge time and wire tension, the gap of deflection was decreased after thickness 60mm and discharge time of 6$\mu\textrm{s}$ due to the changing from fundamental mode to vibration mode. The deflection is the smallest at the water specific resistivity of 7.5 kΩ ㆍcm. The deflection is found to be decreased as increasing dwell time, and the result is due to the vibration of the pressure and the amount of the dielectric. The component of copper(Cu) and zinc(Zn), which is the main material of wire electrode, was observed for rough wire-cutting EDM of STD-11. This phenomena is found to be decreased as the number of EDM is increased. But it will be improved by changing the material and the shape of wire. The roundness of middle is found to be worse than that of upper and it is increased as the thickness of material is increased.

  • PDF

Characteristics of Surface Morphology According to the Pulse Change When Wire-cut Electrical discharge Machining (와이어컷 방전가공시 펄스변화에 따른 표면형상 특성)

  • 이재명
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.537-542
    • /
    • 2000
  • Wire deflection, surface roughness and roundness were observed on changing discharge time for electrical discharge machining(EDM) of STD-11 in various conditions of thickness. The wire deflection was decreased as increasing discharge time and wire tension. The deflection is the smallest at the speed of wire of 10.6m/min and the water specific resistivity of 5k$\Omega$.cm. The deflection is found to be decreased as increasing dwell time. But if the water pressure is high, it is found not to be changed after the vibration of 4sec. The component of copper(Cu) and zinc(Zn), which is the main material of wire electrode, is observed for rough wire-cutting EDM of STD-11. This phenomena is found to be similar in spite of the change of EDM energy level. But it will be improved by changing the material and the shape of wire. The roundness of middle is found to be worse than that of upper and it is increased as the thickness of material is increased.

  • PDF

Inductively coupled plasma etching of SnO2 as a new absorber material for EUVL binary mask

  • Lee, Su-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.124-124
    • /
    • 2010
  • Currently, extreme ultraviolet lithography (EUVL) is being investigated for next generation lithography. EUVL is one of competitive lithographic technologies for sub-22nm fabrication of nano-scale Si devices that can possibly replace the conventional photolithography used to make today's microcircuits. Among the core EUVL technologies, mask fabrication is of considerable importance due to the use of new reflective optics having a completely different configuration compared to those of conventional photolithography. Therefore, new materials and new mask fabrication process are required for high performance EUVL mask fabrication. This study investigated the etching properties of SnO2 (Tin Oxide) as a new absorber material for EUVL binary mask. The EUVL mask structure used for etching is SnO2 (absorber layer) / Ru (capping / etch stop layer) / Mo-Si multilayer (reflective layer) / Si (substrate). Since the Ru etch stop layer should not be etched, infinitely high selectivity of SnO2 layer to Ru ESL is required. To obtain infinitely high etch selectivity and very low LER (line edge roughness) values, etch parameters of gas flow ratio, top electrode power, dc self - bias voltage (Vdc), and etch time were varied in inductively coupled Cl2/Ar plasmas. For certain process window, infinitely high etch selectivity of SnO2 to Ru ESL could be obtained by optimizing the process parameters. Etch characteristics were measured by on scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analyses. Detailed mechanisms for ultra-high etch selectivity will be discussed.

  • PDF

Surface Finishing Technique for Micro 3-Dimensional Structures Using ER Fluid

  • Kim, Wook-Bae;Lee, Sang-Jo;Kim, Yong-Jun;Lee, Eung-Sug
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.1
    • /
    • pp.47-54
    • /
    • 2004
  • In this study, the electrorheological (ER) fluid was used as finishing agent. Since the apparent viscosity can be controlled by an electric field, the ER fluid can be one of efficient materials in finishing processes. To finish small 3-dimensional structures such as the aspherical surface in optical elements, the possible arrangement of a tool, part and auxiliary electrode was described. We examined the influence of the addition of a few abrasive particles on the performance of the ER fluid by measuring yield stress and observed the behavior of abrasive particles in the ER fluid by a CCD camera, which had been also theoretically predicted from the electromechanical principles of particles. On the basis of the above results, the steady flow analysis around the rotating micro tool was performed considering the non-uniform electric field. Finally, borosilicate glass was finished using the mixture of the ER fluid and abrasive particles and material removal with field strength and surface roughness were investigated.

A Study on the Electrical Properties of ITO Thin Films with Various Oxygen Gas Flow Rate (산소 가스 유량비 변화에 따른 ITO 박막의 전기적 특성에 관한 연구)

  • Choi, Dong-H.;Keum, Min-J.;Jean, A.R.;Han, Jean-G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.3
    • /
    • pp.144-148
    • /
    • 2007
  • To prepare the transparent electrode for electronic devices such as flat panel or flexible displays, solar cells, and touch panels; tin doped $In_2O_3$ (ITO) films with low resistivity and a high transparency were fabricated using a facing target sputtering (FTS) system at the various oxygen gas flow rate. The carrier concentration and mobility of ITO films were measured by Hall Effect measurement. And the transmittance was measured using the UV-VIS spectrometer. As a result, we can obtain the ITO thin films prepared at 10% oxygen gas flow ratio, thickness 150 nm with transmittance 85% and resistivity $8.1{\times}10^{-4}{\Omega}cm$ and surface roughness 5.01 nm.

Influence of a Stacked-CuPc Layer on the Performance of Organic Light-Emitting Diodes

  • Choe Youngson;Park Si Young;Park Dae Won;Kim Wonho
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.38-44
    • /
    • 2006
  • Vacuum deposited copper phthalocyanine (CuPc) was placed as a thin interlayer between indium tin oxide (ITO) electrode and a hole transporting layer (HTL) in a multi-layered, organic, light-emitting diode (OLEOs). The well-stacked CuPc layer increased the stability and efficiency of the devices. Thermal annealing after CuPc deposition and magnetic field treatment during CuPc deposition were performed to obtain a stacked-CuPc layer; the former increased the stacking density of the CuPc molecules and the alignment of the CuPc film. Thermal annealing at about 100$^{circ}C$ increased the current flow through the CuPc layer by over 25$\%$. Surface roughness decreased from 4.12 to 3.65 nm and spikes were lowered at the film surface as well. However, magnetic field treatment during deposition was less effective than thermal treatment. Eventually, a higher luminescence at a given voltage was obtained when a thermally-annealed CuPc layer was placed in the present, multi-layered, ITO/CuPc/NPD/Alq3/LiF/AI devices. Thermal annealing at about 100$^{circ}C$ for 3 h produced the most efficient, multi-layered EL devices in the present study.