• Title/Summary/Keyword: electrochemical techniques

Search Result 324, Processing Time 0.022 seconds

Recent Research Trend of Biosensors for Colorectal Cancer Specific Protein Biomarkers (대장암 진단용 단백질 바이오마커 측정을 위한 바이오센서 개발의 최신 연구 동향)

  • Li, Jingjing;Si, Yunpei;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.253-259
    • /
    • 2021
  • Colorectal cancer (CRC) is one of the most prevalent diseases in modern society, constituting a serious threat to global health. Currently, routine clinical screening and early removal of precancerous polyps are the most successful methods for reducing CRC incidence and mortality. However, the high cost and invasive detection of sigmoidoscopy and colonoscopy limited the CRC-screening participation and prevention. The emergence of biosensors provides an inexpensive, sensitive, less invasive tool for detecting CRC disease biomarkers. This review highlights some of recent efforts made on developing biosensors with electrochemical and optical techniques targeting CRC specific protein biomarkers for early diagnosis and prognosis, potential applications, and future perspectives.

The Inhibitive Effect of Poly(p-Anisidine) on Corrosion of Iron in 1M HCl Solutions

  • Manivel, P.;Venkatachari, G.
    • Corrosion Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.51-55
    • /
    • 2005
  • The corrosion inhibitive effect of Poly (p-Anisidine) on iron in 1M HCl with various concentrations were studied by using electrochemical methods such as impedance measurements and polarization techniques. The inhibition efficiency (IE) of Poly (p- Anisidine) was compared with its monomer and it was observed that there is a remarkable increase for the polymer. Further, it is found that the value of IE increases with increasing concentrations for both monomer and polymer of p-Anisidine.

Corrosion in Batteries

  • Muniyandi, N.
    • Corrosion Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • A comprehensive coverage of corrosion in batteries is rendered difficult by the wide choice of materials, environments and physical features as obtained in practical settings. Understanding of the complex processes that occur in these electrochemical systems gets clearer as new theoretical approaches backed by sophisticated analytical and characterization techniques continue to provide valuable insights which aid in controlling/mitigating wasteful corrosion reactions which affect battery shelf-life, cycle life, rate capability and capacity. In the light of the above, I limit myself to a discussion on corrosion aspects in representative system such as conventional Leclanche, lead-acid battery and magnesium batteries, and advanced lithium systems.

The Effect of Grain Refiner on Ni-Fe-P Alloy Electrodeposition (Ni-Fe-P 합금전착에 미치는 Grain Refiner의 영향)

  • 서무홍;김동진;김정수
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.6
    • /
    • pp.437-443
    • /
    • 2003
  • The effects of additive(grain refiner, GR) on process efficiency of the Ni-Fe-P alloy electrodeposition and the material properties of the deposit were investigated. Electrochemical properties of the deposits were investigated using polarization and electrochemical impedance techniques, and the material properties of the deposits were characterized through inductively coupled plasma(ICP), spiral contractometer, XRD, SEM and TEM. When the additive was added into the electrodeposition bath, current efficiency, Ni content and corrosion resistance of the deposit increased, whereas residual stress, surface roughness and grain size of the deposit decreased.

Use of Local Electrochemical Methods (SECM, EC-STM) and AFM to Differentiate Microstructural Effects (EBSD) on Very Pure Copper

  • Martinez-Lombardia, Esther;Lapeire, Linsey;Maurice, Vincent;De Graeve, Iris;Klein, Lorena;Marcus, Philippe;Verbeken, Kim;Kestens, Leo;Gonzalez-Garcia, Yaiza;Mol, Arjan;Terryn, Herman
    • Corrosion Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • When aiming for an increased and more sustainable use of metals a thorough knowledge of the corrosion phenomenon as function of the local metal microstructure is of crucial importance. In this work, we summarize the information presented in our previous publications[1-3] and present an overview of the different local (electrochemical) techniques that have been proven to be effective in studying the relation between different microstructural variables and their different electrochemical behavior. Atomic force microscopy (AFM)[1], scanning electrochemical microscopy (SECM)[2], and electrochemical scanning tunneling microscopy (EC-STM)[3] were used in combination with electron backscatter diffraction (EBSD). Consequently, correlations could be identified between the grain orientation and grain boundary characteristics, on the one hand, and the electrochemical behavior on the other hand. The grain orientation itself has an influence on the corrosion, and the orientation of the neighboring grains also seems to play a decisive role in the dissolution rate. With respect to intergranular corrosion, only coherent twin boundaries seem to be resistant.

Anodization of Aluminium Samples in Boric Acid Solutions by Optical Interferometry Techniques

  • Habib, K.
    • Corrosion Science and Technology
    • /
    • v.4 no.6
    • /
    • pp.217-221
    • /
    • 2005
  • In the present investigation, holographic interferometry was utilized for the first time to monitor in situ the thickness of the oxide film of aluminium samples during anodization processes in boric acid solutions. The anodization process (oxidation) of the aluminium samples was carried out by the technique of the electrochemical impedance spectroscopy(EIS), in different concentrations of boric acid (0.5-5.0% $H_3BO_3$) at room temperature. In the mean time, the real-time holographic interferometry was used to measure the thickness of anodized (oxide) film of the aluminium samples in solutions. Consequently, holographic interferometry is found very useful for surface finish industries especially for monitoring the early stage of anodization processes of metals, in which the thickness of the anodized film of the aluminium samples can be determined without any physical contact. In addition, measurements of electrochemical values such as the alternating current (A.C) impedance(Z), the double layer capacitance($C_{dl}$), and the polarization resistance(Rp) of anodized films of aluminium samples in boric acid solutions were made by the electrochemical impedance spectroscopy(EIS). Attempts to measure electrochemical values of Z, Cdl, and Rp were not possible by holographic interferometry in boric acid especially in low concentrations of the acid. This is because of the high rate of evolutions of interferometric fringes during the anodization process of the aluminium samples in boric acid, which made measurements of Z, Cdl, and Rp are difficult.

Methyl Viologen Mediated Oxygen Reduction in Ethanol Solvent: the Electrocatalytic Reactivity of the Radical Cation

  • Lin, Qianqi;Li, Qian;Batchelor-McAuley, Christopher;Compton, Richard G.
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.71-80
    • /
    • 2013
  • The study of methyl viologen ($MV^{2+}$) mediated oxygen reduction in electrolytic ethanol media possesses potential application in the electrochemical synthesis of hydrogen peroxide mainly due to the advantages of the much increased solubility of molecular oxygen ($O_2$) and high degree of reversibility of $MV^{2+/{\bullet}+}$ redox couple. The diffusion coefficients of both $MV^{2+}$ and $O_2$ were investigated via electrochemical techniques. For the first time, $MV^{2+}$ mediated $O_2$ reduction in electrolytic ethanol solution has been proved to be feasible on both boron-doped diamond and micro-carbon disc electrodes. The electrocatalytic response is demonstrated to be due to the radical cation, $MV^{{\bullet}+}$. The homogeneous electron transfer step is suggested to be the rate determining step with a rate constant of $(1{\pm}0.1){\times}10^5M^{-1}s^{-1}$. With the aid of a simulation program describing the EC' mechanism, by increasing the concentration ratio of $MV^{2+}$ to $O_2$ electrochemical catalysis can be switched from a partial to a 'total catalysis' regime.

Applying an Artificial Neural Network to the Control System for Electrochemical Gear-Tooth Profile Modifications

  • Jianjun, Yi;Yifeng, Guan;Baiyang, Ji;Bin, Yu;Jinxiang, Dong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.27-32
    • /
    • 2007
  • Gears, crucial components in modern precision machinery for power transmission mechanisms, are required to have low contacting noise with high torque transmission, which makes the use of gear-tooth profile modifications and gear-tooth surface crowning extremely efficient and valuable. Due to the shortcomings of current techniques, such as manual rectification, mechanical modification, and numerically controlled rectification, we propose a novel electrochemical gear-tooth profile modification method based on an artificial neural network control technique. The fundamentals of electrochemical tooth-profile modifications based on real-time control and a mathematical model of the process are discussed in detail. Due to the complex and uncertain relationships among the machining parameters of electrochemical tooth-profile modification processes, we used an artificial neural network to determine the required processing electric current as the tooth-profile modification requirements were supplied. The system was implemented and a practical example was used to demonstrate that this technology is feasible and has potential applications in the production of precision machinery.

Corrosion in Oil well Stimulation Processes Caused by Different Chelating Agents Based on EDTA Compounds

  • Calderon, J.A.;Vasquez, F.A.;Arbelaez, L.;Carreno, J.A.
    • Corrosion Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.59-63
    • /
    • 2017
  • Chelating solutions can be damaged by strong acids during oil production. To design effective corrosion inhibitors and other alternatives for corrosion control, it is important to understand not only the behavior of the system under operating condition but also the kinetics of electrochemical reactions during the corrosion process. In this study, the electrochemical behaviors of P-110 steel in aqueous fluids based on ethylenediaminetetraacetic acid (EDTA) compounds under various temperatures and hydrodynamic regime conditions were assessed. Electrochemical measurements were conducted using rotating disc electrodes manufactured. Electrolytes were prepared using aqueous compounds of EDTA like diammonium salt, disodium salt, and tetrasodium salt. Potentiodynamic polarization, electrochemical impedance, and mass loss tests were performed in order to assess the corrosion kinetic in electrolytes. Hydrodynamic effects were observed only in the cathodic polarization curve. This proves that hydrodynamic regime plays an important role in the corrosion of steel mainly in disodium and diammonium EDTA solutions. Two cathodic reactions controlled the corrosion process. However, oxygen level and pH of the electrolyte played the most important role in metal corrosion. Corrosion rates in those fluids were decreased drastically when oxygen concentration was reduced.

Investigation of Polypyrrole Coatings Containing Nanosized Metal Oxides for Corrosion Protection of AA2024 Al Alloy

  • Fekri, F.;Shahidi, M.;Foroughi, M.M.;Kazemipour, M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.148-158
    • /
    • 2019
  • The corrosion protection of AA2024 PPy coated samples doping with nanosized metal oxides, including $TiO_2$ and $CeO_2$ nanoparticles and $Nd_2O_3$ nanorods, during exposure to the solutions of 0.1 M $H_2SO_4$ and 3.5% NaCl was evaluated by electrochemical impedance spectroscopy (EIS) and linear polarization resistance (LPR) techniques. The nanorods of $Nd_2O_3$ were synthesized by cathodic pulse electrochemical deposition technique. The barrier properties of the different PPy coatings containing nanosized metal oxides immersed in $H_2SO_4$ solution were ranked as follows: $Nd_2O_3$ > $TiO_2$ > $CeO_2$. Therefore, the $Nd_2O_3$ coating sample provided the highest corrosion protection at any time of immersion up to 72 hours after immersing in $H_2SO_4$ solution. On the other hand, the $CeO_2$ coating sample displayed the best anticorrosive properties among the other coating samples after immersion in NaCl solution up to 28 days. This is due to the inhibition effect of cerium ions on aluminum alloys at near-neutral solutions.