DOI QR코드

DOI QR Code

Methyl Viologen Mediated Oxygen Reduction in Ethanol Solvent: the Electrocatalytic Reactivity of the Radical Cation

  • Lin, Qianqi (Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University) ;
  • Li, Qian (Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University) ;
  • Batchelor-McAuley, Christopher (Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University) ;
  • Compton, Richard G. (Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University)
  • Received : 2013.06.07
  • Accepted : 2013.06.17
  • Published : 2013.06.30

Abstract

The study of methyl viologen ($MV^{2+}$) mediated oxygen reduction in electrolytic ethanol media possesses potential application in the electrochemical synthesis of hydrogen peroxide mainly due to the advantages of the much increased solubility of molecular oxygen ($O_2$) and high degree of reversibility of $MV^{2+/{\bullet}+}$ redox couple. The diffusion coefficients of both $MV^{2+}$ and $O_2$ were investigated via electrochemical techniques. For the first time, $MV^{2+}$ mediated $O_2$ reduction in electrolytic ethanol solution has been proved to be feasible on both boron-doped diamond and micro-carbon disc electrodes. The electrocatalytic response is demonstrated to be due to the radical cation, $MV^{{\bullet}+}$. The homogeneous electron transfer step is suggested to be the rate determining step with a rate constant of $(1{\pm}0.1){\times}10^5M^{-1}s^{-1}$. With the aid of a simulation program describing the EC' mechanism, by increasing the concentration ratio of $MV^{2+}$ to $O_2$ electrochemical catalysis can be switched from a partial to a 'total catalysis' regime.

Keywords

References

  1. C. L. Bird and A. T. Kuhn, Chem. Soc. Rev., 1981, 10, 49-82. https://doi.org/10.1039/cs9811000049
  2. K. Tanabe, T. Yasuda, M. Yoshio and T. Kato, Org. Lett., 2007, 9, 4271-4274. https://doi.org/10.1021/ol701741e
  3. P. M. S. Monk, R. D. Fairweather, M. D. Ingram and J. A. Duffy, J. Chem. Soc., Perkin Transactions 2, 1992, 2039-2041.
  4. C. P. Andrieux, P. Hapiot and J. M. Saveant, J. Electroanal. Chem., 1985, 189, 121-133. https://doi.org/10.1016/0368-1874(85)85630-6
  5. I. V. Shelepin and O. A. Ushakov, Zh. Fiz. Khim., 1973, 49.
  6. Q. Lin, Q. Li, C. Batchelor-McAuley and R. G. Compton, Phys. Chem. Chem. Phys., 2013, 15, 7760-7767. https://doi.org/10.1039/c3cp50873k
  7. R. N. F. Thorneley, Biochim. Biophys. Acta, 1974, 333, 487-496. https://doi.org/10.1016/0005-2728(74)90133-9
  8. J. A. Farrington, M. Ebert, E. J. Land and K. Fletcher, Biochim. Biophys. Acta, 1973, 314, 372-381. https://doi.org/10.1016/0005-2728(73)90121-7
  9. I. Fridovich and H. M. Hassan, Trends Biochem. Sci, 1979, 4, 113-115. https://doi.org/10.1016/0968-0004(79)90395-5
  10. J. M. Campos-Martin, G. Blanco-Brieva and J. L. G. Fierro, Angew. Chem. Int. Ed., 2006, 45, 6962-6984. https://doi.org/10.1002/anie.200503779
  11. I. Yamanaka and T. Murayama, Angew. Chem. Int. Ed., 2008, 47, 1900-1902. https://doi.org/10.1002/anie.200704431
  12. J. K. Edwards, B. Solsona, E. N. N, A. F. Carley, A. A. Herzing, C. J. Kiely and G. J. Hutchings, Science, 2009, 323, 1037-1041. https://doi.org/10.1126/science.1168980
  13. Y. Che, K. Tokuda and T. Ohsaka, Bull. Chem. Soc. Jpn., 1998, 71, 651-656. https://doi.org/10.1246/bcsj.71.651
  14. Y. Wang, E. I. Rogers and R. G. Compton, J. Electroanal. Chem., 2010, 648, 15-19. https://doi.org/10.1016/j.jelechem.2010.07.006
  15. Y. Saito, Rev. Pola., 1968, 15, 178-187
  16. C. A. Paddon, D. S. Silvester, F. L. Bhatti, T. J. Donohoe and R. G. Compton, Electroanalysis, 2007, 19, 11-22. https://doi.org/10.1002/elan.200603667
  17. L. Xiong, L. Aldous, M. C. Henstridge and R. G. Compton, Anal. Methods, 2012, 4, 371-376. https://doi.org/10.1039/c1ay05667k
  18. O. V. Klymenko, R. G. Evans, C. Hardacre, I. B. Svir and R. G. Compton, J. Electroanal. Chem., 2004, 571, 211-221. https://doi.org/10.1016/j.jelechem.2004.05.012
  19. D. Shoup and A. Szabo, J. Electroanal. Chem., 1982, 140, 237-245. https://doi.org/10.1016/0022-0728(82)85171-1
  20. N. V. Rees, O. V. Klymenko, R. G. Compton and M. Oyama, J. Electroanal. Chem., 2002, 531, 33-42. https://doi.org/10.1016/S0022-0728(02)01054-9
  21. K. R. Ward, N. S. Lawrence, R. S. Hartshorne and R. G. Compton, J. Phys. Chem. C, 2011, 115, 11204-11215. https://doi.org/10.1021/jp2023204
  22. D. T. Sawyer, A. Sobkowiak and J. J. L. Roberts, Electrochemistry for Chemists, John Wiley and Sons, Inc 1995.
  23. E. Sada, S. Kito, T. Oda and Y. Ito, Chem. Eng. J., 1975, 10, 155-159. https://doi.org/10.1016/0300-9467(75)88030-0
  24. I. M. Krieger, G. W. Mulholland and C. S. Dickey, J. Phys. Chem., 1967, 71, 1123-1129. https://doi.org/10.1021/j100863a051
  25. W. R. Ware, J. Phys. Chem., 1962, 66, 455-458. https://doi.org/10.1021/j100809a020
  26. P. Chang and C. R. Wilke, The Journal of Physical Chemistry, 1955, 59, 592-596. https://doi.org/10.1021/j150529a005
  27. Q. Li, C. Batchelor-McAuley, N. S. Lawrence, R. S. Hartshorne and R. G. Compton, J. Electroanal. Chem., 2013, 688, 328-335. https://doi.org/10.1016/j.jelechem.2012.07.039
  28. J. Fei Wu, Y. Che, T. Okajima, F. Matsumoto, K. Tokuda and T. Ohsaka, Electrochim. Acta, 1999, 45, 987-991. https://doi.org/10.1016/S0013-4686(99)00289-3
  29. D. Vasudevan and H. Wendt, J. Electroanal. Chem., 1995, 392, 69-74. https://doi.org/10.1016/0022-0728(95)04044-O
  30. D. J. Jacob, Introduction to Atmospheric Chemistry, Princeton University Press, Princeton, N.J., 1999.
  31. I. N. Levine, Physical Chemistry, McGraw-Hil, Boston, 2009.
  32. W. Koppenol, D. Stanbury and P. Bounds, Free Radical Bio. Med., 2010, 49, 317-322. https://doi.org/10.1016/j.freeradbiomed.2010.04.011
  33. C.-W. Lee and J.-M. Jang, Bull. Korean Chem. Soc., 1994, 15, 563-567.
  34. J.-M. Saveant, Elements of Molecular and Biomolecular Electrochemistry, John Wiley & Sons, Inc., Hoboken, New Jersey, 2006.
  35. J.-M. Saveant, Chem. Rev., 2008, 108, 2348-2378. https://doi.org/10.1021/cr068079z
  36. G. E. Papanastasiou and I. I. Ziogas, J. Chem. Eng. Data, 1991, 36, 46-51. https://doi.org/10.1021/je00001a014
  37. G. P. Cunningham, G. A. Vidulich and R. L. Kay, Journal of Chemical & Engineering Data, 1967, 12, 336-337. https://doi.org/10.1021/je60034a013
  38. A. J. Bard and L. R. Faulkner, Electrochemical methods: Fundamentals and Applications, Wiley & Sons, New York, 2001.
  39. R. Nissim, C. Batchelor-McAuley, M. C. Henstridge and R. G. Compton, Chem. Commun., 2012, 48, 3294-3296. https://doi.org/10.1039/c2cc30165b
  40. M. Hahn, M. Baertschi, O. Barbieri, J. C. Sauter, R. Kotz and R. Gallay, Electrochem. Solid-State Lett., 2004, 7, A33-A36. https://doi.org/10.1149/1.1635671
  41. H. Gerischer, R. McIntyre, D. Scherson and W. Storck, J. Phys. Chem., 1987, 91, 1930-1935. https://doi.org/10.1021/j100291a049