• Title/Summary/Keyword: electrochemical removal

Search Result 232, Processing Time 0.023 seconds

The Study of Capacitive Deionization Technology by the Analysis of Patents and Papers (특허 및 논문 분석을 통한 축전식 탈염(CDI) 기술 연구)

  • Son, Won-Keun;Kim, Tae-Il;Han, Hye-Jung;Kang, Kyung-Seok
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.697-703
    • /
    • 2011
  • Capacitive deionization(CDI) is an ion removal technology that employs the basic electrochemical principle of absorbing ions in high surface area electrode. CDI technology reduce power consumption because it operates at lower electrode potential(about 1~2 V). Also, it is an environmentally friendly technology because no acid, base, or salts are required to generate the surface. In this study, we searched the patents and papers to investigate the trend of CDI technologies. Database was collected from WIPS and Scopus site and was investigated according to electrode, module and application technology of CDI. The technology trend of CDI was analyzed based on patent application year, countries, main applications and technologies.

Surface Characterization of Cu as Electrolyte in ECMP (ECMP 공정에서 전해질에 따른 Cu 표면 특성 평가)

  • Kwon, Tae-Young;Kim, In-Kwon;Cho, Byung-Gwun;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.528-528
    • /
    • 2007
  • Cu CMP widely has been using for the formation of multilevel metal interconnects by the Cu damascene process. And lower dielectric constant materials are required for the below 45nm technology node. As the dielectric constant of dielectric materials are smaller, the strength of dielectric materials become weaker. Therefore these materials are easily damaged by high down pressure during conventional CMP. Also, technical problems such as surface scratches, delamination, dishing and erosion are also occurred. In order to overcome these problems in CMP, the ECMP (electro-chemical mechanical planarization) has been introduced. In this process, abrasive free electrolyte, soft pad and low down force were used. The electrolyte is one of important factor to solve these problems. Also, additives are required to improve the removal rate, uniformity, surface roughness, defects, and so on. In this study, KOH and $NaNO_3$ based electrolytes were used for Cu ECMP and the electrochemical behavior was evaluated by the potentiostat. Also, the Cu surface was observed by SEM as a function of applied voltage and chemical concentration.

  • PDF

Characteristics of Copper Thin Films and Patter Filling by Electrochemical Deposition(ECD) (전기화학증착법에 의한 구리박막과 패턴충전 특성)

  • Kim, Yong-An;Yang, Seong-Hun;Lee, Seok-Hyeong;Lee, Gyeong-U;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.9 no.6
    • /
    • pp.583-588
    • /
    • 1999
  • The characteristics of copper thin films and pattern filling capability were investigated by ECD. Prior to deposition of copper film, seed-Cu/Ta(TaN)/$SIO_2$(BPSG)/Si structure was manufactured. Copper deposition was performed with various current waveforms(DC/PC, 1~10,000Hz) and current densities(10~60 mA/$\textrm{cm}^2$) after pretreatment (Oxident removal, wetting) of seed-layer. Conformal pattern filling was performed using PC method with fast deposition rate of 6,000~8,000$\AA$/min. Heat-treated($450^{\circ}C$, 30min) copper films showed good resistivities of 1.8~2.1$\mu$$\Omega$.cm. According to the XRD analysis, (111)-preferred orientation of copper film was found in ECD-Cu/seed-Cu/Ta/$Sio_2$/Si structure. Also, we have successfully achieved to fill via holes with 0.35$\mu\textrm{m}$ width and 4:1 aspect ratio.

  • PDF

Electroconvective Instability on Undulated Ion-selective Surface (파상형 이온 선택 표면상의 전기와류 불안정성)

  • Lee, Hyomin
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.735-742
    • /
    • 2019
  • In this work, the electrokinetic interactions between the undulated structure of an ion-selective membrane and electroconvective instability has been studied using numerical analysis. Using finite element method, electric field-ionic species transport-flow field were analyzed by fully-coupled manner. Through the numerical study, the Dukhin's mode as the mechanism of undulated surface for the electroconvective instability were proven. The Dukhin's mode which competes with Rubinstein's mode has roles of (i) decreasing transition voltage to overlimiting regime and (ii) non-linearly increasing of overlimiting current. Also, (iii) the mixing efficiency is enhanced by removal mechanism of high-frequency Fourier mode of the electroconvective instability. Conclusively, the undulated ion-selective surface would provide energy-efficient mechanism for ion-selective transport systems such as electrodialysis, electrochemical battery, etc.

Ammonia neutralization and removal using electrolyzed-acidic water (전해산성수를 이용한 암모니아 중화와 제거)

  • Choi, Weon-Kyung
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.5
    • /
    • pp.185-190
    • /
    • 2021
  • An electrolyzed-acidic water treatment was investigated as a methods for removing ammonia, which is a cause of odor in life environment. The prepared electrolyzed-acidic water was found out as stable solvent capable of neutralizing weak alkaline ammonia by measuring changes in pH and ORP. It was found out that ammonia was removed from the mixture solution of electrolyzed-acidic water and ammonia water by the UV-vis absorbance analysis and electrochemical open-circuit potential measurement. The neutralized ammonia by electrolyzed-acidic water and effectively removed odor was measured using ammonia gas detecter. Consequently, we recommend the electrolyzed-acidic water can effectively and safely remove ammonia in eco-friendly.

Load Variation Removal and Stack Durability Experiments to Improve Lifetime of Fuel Cell Stack for Hydrogen Electric Vehicles (수소전기차 연료전지 수명 향상을 위한 부하 변동 제거 및 스택 내구성 실험)

  • DONGWON LEE;BEOMJUN KIM;SEOUNGRO LEE
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.4
    • /
    • pp.370-376
    • /
    • 2024
  • Load variations reduce the lifespan of polymer electrolyte fuel cells (PEFCs). To analyze the impact of load variations on durability of PEFCs, two stacks were built and operated continuously for 400 hours, one under load variations and the other under constant current condition with the same energy output. Using the example model provided by Mathworks, we obtained load variation data for the experiments. The performance curves were measured every 100 hours and analyzed by current interruption method and electrochemical impedance spectroscopy. The degradation comparison shows a much larger decrease in performance under the load variation. The activation resistance, electrical resistance, and mass transfer resistance are all found to increase more.

Electrochemical Treatment of Dye Wastewater Using Fe, RuO2/Ti, PtO2/Ti, IrO2/Ti and Graphite Electrodes (RuO2/Ti, PtO2/Ti, IrO2/Ti 및 흑연전극을 이용한 염료폐수의 전기화학적 처리)

  • Kim, A Ram;Park, Hyun Jung;Won, Yong Sun;Lee, Tae Yoon;Lee, Jae Keun;Lim, Jun Heok
    • Clean Technology
    • /
    • v.22 no.1
    • /
    • pp.16-28
    • /
    • 2016
  • Textile industry is considered as one of the most polluting sectors in terms of effluent composition and volume of discharge. It is well known that the effluents from textile dying industry contain not only chromatic substances but also large amounts of organic compounds and insolubles. The azo dyes generate huge amount of pollutions among many types of pigments. In general, the electrochemical treatments, separating colors and organic materials by oxidation and reduction on electrode surfaces, are regarded as simpler and faster processes for removal of pollutants compared to other wastewater treatments. In this paper the electrochemical degradation characteristics of dye wastewater containing CI Direct Blue 15 were analyzed. The experiments were performed with various anode materials, such as RuO2/Ti, PtO2/Ti, IrO2/Ti and graphite, with stainless steel for cathode. The optimal anode material was located by changing operating conditions like electrolyte concentration, current density, reaction temperature and initial pH. The degradation efficiency of dye wastewater increased in proportion to the electrolyte concentration and the current density for all anode materials, while the temperature effect was dependent on the kind. The performance orders of anode materials were RuO2/Ti > PtO2/Ti > IrO2/Ti > graphite in acid condition and RuO2/Ti > IrO2/Ti > PtO2/Ti > graphite in neutral and basic conditions. As a result, RuO2/Ti demonstrated the best performance as an anode material for the electrochemical treatment of dye wastewater.

Identification of Internal Resistance of Microbial Fuel Cell by Electrochemical Technique and Its Effect on Voltage Change and Organic Matter Reduction Associated with Power Management System (전기화학적 기법에 의한 미생물연료전지 내부저항 특성 파악 및 전력관리시스템 연계 전압 변화와 유기물 저감에 미치는 영향)

  • Jang, Jae Kyung;Park, Hyemin;Kim, Taeyoung;Yang, Yoonseok;Yeo, Jeongjin;Kang, Sukwon;Paek, Yee;Kwon, Jin Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.220-228
    • /
    • 2018
  • The internal resistance of microbial fuel cell (MFC) using stainless steel skein for oxidizing electrode was investigated and the factors affecting the voltage generation were identified. We also investigated the effect of power management system (PMS) on the usability for MFC and the removal efficiency of organic pollutants. The performance of a stack microbial fuel cell connected with (PMS) or PMS+LED was analyzed by the voltage generation and organic matter reduction. The maximum power density of the unit cells was found to be $5.82W/m^3$ at $200{\Omega}$. The maximum current density was $47.53A/m^3$ without power overshoot even under $1{\Omega}$. The ohmic resistance ($R_s$) and the charge transfer resistance ($R_{ct}$) of the oxidation electrode using stainless steel skein electrode, were $0.56{\Omega}$ and $0.02{\Omega}$, respectively. However, the sum of internal resistance for reduction electrode using graphite felts loaded Pt/C catalyst was $6.64{\Omega}$. Also, in order to understand the internal resistance, the current interruption method was used by changing the external resistance as $50{\Omega}$, $300{\Omega}$, $5k{\Omega}$. It has been shown that the ohm resistance ($R_s$) decreased with the external resistance. In the case of a series-connected microbial fuel cell, the reversal phenomenon occurred even though two cells having the similar performance. However, the output of the PMS constantly remained for 20 hours even when voltage reversal occurred. Also the removal ability of organic pollutants (SCOD) was not reduced. As a result of this study, it was found that buffering effect for a certain period of time when the voltage reversal occurred during the operation of the microbial fuel cell did not have a serious effect on the energy loss or the operation of the microbial fuel cell.

Electrochemical Characteristics of the MFCs using the Ceramic Membrane as a Separator (세라믹막을 이용한 미생물연료전지의 전기화학적 특성 연구)

  • Lim, Ji-Young;Park, Dae-Seok;Kim, Jin-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5728-5735
    • /
    • 2015
  • This study attempts to verify the applicability of ceramic membrane as a separator by comparing the power generation characteristics in single-chamber MFCs using ceramic membranes to those in the MFCs using nafion membrane. The generated power in MFCs by using acetate as a substrate was more stable than that by using formate, propionate and butyrate, respectively. It was shown that the generated power by using formate substrate in MFCs was unstable and a little higher than that by using acetate, and the power generated by using propionate and butyrate were lower than that by using acetate. In order to find out the Pt catalyst effect, it was compared the power generated in MFCs using Pt-coated carbon cloth as electrode to that power using normal carbon cloth. The power generated in MFCs using Pt-coated carbon cloth as electrode was 1.2 times higher than that using normal carbon cloth. The Pt-coated carbon cloth was about 5 times more expensive than normal carbon cloth. It is suggested that both power generation efficiency and cost together should be considered in selecting electrodes of MFCs. It was found that the ceramic membrane was superior to nafion membrane by comparing to the power generation characteristics obtained. It was shown that average voltage values were $523.67mV{\pm}49.41mV$ by using synthetic wastewater, in MFCs of ceramic membrane as a separator. While average voltage values were $424.09mV{\pm}79.95mV$ by using synthetic wastewater, in MFCs of nafion membrane as a separator. The organic removal efficiency, 41.7% by using ceramic membrane was a little bit higher than 40.8% by using nafion membrane. This research implies ceramic membrane can be a valid alternative to nafion membrane as a separator when considering the power generation and the efficiency of organics removal.

Electrochemical Characterization of Anti-Corrosion Film Coated Metal Conditioner Surfaces for Tungsten CMP Applications (텅스텐 화학적-기계적 연마 공정에서 부식방지막이 증착된 금속 컨디셔너 표면의 전기화학적 특성평가)

  • Cho, Byoung-Jun;Kwon, Tae-Young;Kim, Hyuk-Min;Venkatesh, Prasanna;Park, Moon-Seok;Park, Jin-Goo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.61-66
    • /
    • 2012
  • Chemical Mechanical Planarization (CMP) is a polishing process used in the microelectronic fabrication industries to achieve a globally planar wafer surface for the manufacturing of integrated circuits. Pad conditioning plays an important role in the CMP process to maintain a material removal rate (MRR) and its uniformity. For metal CMP process, highly acidic slurry containing strong oxidizer is being used. It would affect the conditioner surface which normally made of metal such as Nickel and its alloy. If conditioner surface is corroded, diamonds on the conditioner surface would be fallen out from the surface. Because of this phenomenon, not only life time of conditioners is decreased, but also more scratches are generated. To protect the conditioners from corrosion, thin organic film deposition on the metal surface is suggested without requiring current conditioner manufacturing process. To prepare the anti-corrosion film on metal conditioner surface, vapor SAM (self-assembled monolayer) and FC (Fluorocarbon) -CVD (SRN-504, Sorona, Korea) films were prepared on both nickel and nickel alloy surfaces. Vapor SAM method was used for SAM deposition using both Dodecanethiol (DT) and Perfluoroctyltrichloro silane (FOTS). FC films were prepared in different thickness of 10 nm, 50 nm and 100 nm on conditioner surfaces. Electrochemical analysis such as potentiodynamic polarization and impedance, and contact angle measurements were carried out to evaluate the coating characteristics. Impedance data was analyzed by an electrical equivalent circuit model. The observed contact angle is higher than 90o after thin film deposition, which confirms that the coatings deposited on the surfaces are densely packed. The results of potentiodynamic polarization and the impedance show that modified surfaces have better performance than bare metal surfaces which could be applied to increase the life time and reliability of conditioner during W CMP.