• Title/Summary/Keyword: electrochemical removal

Search Result 232, Processing Time 0.018 seconds

Investigation on Trend Removal in Time Domain Analysis of Electrochemical Noise Data Using Polynomial Fitting and Moving Average Removal Methods

  • Havashinejadian, E.;Danaee, I.;Eskandari, H.;Nikmanesh, S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.115-123
    • /
    • 2017
  • Electrochemical noise signals in many cases exhibit a DC drift that should be removed prior to further data analysis. Polynomial fitting and moving average removal method have been used to remove trends of electrochemical noise (EN) in time domain. The corrosion inhibition of synthesized schiff base N,N'-bis(3,5-dihydroxyacetophenone)-2,2-dimethylpropandiimine on API-5L-X70 steel in hydrochloric acid solutions were used to study the effects of drifts removal methods on noise resistance calculation. Also, electrochemical impedance spectroscopy (EIS) was used to study the corrosion inhibition property of the inhibitor. The results showed that for the calculation of $R_n$, both methods were effective in trend removal and the polynomial with m=4 and MAR with p=40 were in agreement.

Electrochemical Removal Efficiency of Pollutants on ACF Electrodes

  • Oh, Won-Chun;Park, Joung-Sung;Lee, Ho-Jin;Yum, Min-Hyung
    • Carbon letters
    • /
    • v.5 no.4
    • /
    • pp.191-196
    • /
    • 2004
  • The electrochemical removal (ECR) of water pollutants by activated carbon fiber (ACF) electrodes from wastewater was investigated over wide range of electrochemical reaction time. The ECR capacities of ACF electrodes were associated with their internal porosity and were related to physical properties and to reaction time. And, surface morphologies and elemental analysis for the ACFs after electrochemical reaction are investigated by SEM and EDX to explain the changes in adsorption properties. The FT-IR spectra of ACFs for the investigation of functional groups show that the electrochemical treatment is consequently associated with the homogeneous removal of pollutants with the increasing surface reactivity of the activated carbon fiber surfaces. The ACFs were electrochemically reacted to waste water to investigate the removal efficiency for the COD, T-N and T-P. From these removal results of pollutants using ACFs substrate, satisfactory removal performance was obtained. The outstanding removal effects of the ACFs substrate were determined by the properties of the material for adsorption and trapping of organics, and catalytic effects.

  • PDF

Methodological Consideration on the Prediction of Electrochemical Mechanical Polishing Process Parameters by Monitoring of Electrochemical Characteristics of Copper Surface

  • Seo, Yong-Jin
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.346-351
    • /
    • 2020
  • The removal characteristics of copper (Cu) from electrochemical surface by voltage-activated reaction were reviewed to assess the applicability of electrochemical-mechanical polishing (ECMP) process in three types of electrolytes, such as HNO3, KNO3 and NaNO3. Electrochemical surface conditions such as active, passive, transient and trans-passive states were monitored from its current-voltage (I-V) characteristic curves obtained by linear sweep voltammetry (LSV) method. In addition, the oxidation and reduction process of the Cu surface by repetitive input of positive and negative voltages were evaluated from the I-V curve obtained using the cyclic voltammetry (CV) method. Finally, the X-ray diffraction (XRD) patterns and energy dispersive spectroscopy (EDS) analyses were used to observe the structural surface states of a Cu electrode. The electrochemical analyses proposed in this study will help to accurately control the material removal rate (MRR) from the actual ECMP process because they are a good methodology for predicting optimal electrochemical process parameters such as current density, operating voltage, and operating time before performing the ECMP process.

Operational conditions of electrochemical oxidation process for removal of cyanide (CN-) in real plating wastewater

  • Zhao, Xin;Jang, Minsik;Cho, Jin Woo;Lee, Jae Woo
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.217-222
    • /
    • 2020
  • An electrochemical oxidation process was applied to remove cyanide (CN-) from real plating wastewater. CN- removal efficiencies were investigated under various operating factors: current density and electrolyte concentration. Electrolyte concentration positively affected the removal of both CN- and Chemical Oxygen Demand (COD). As the electrolyte concentration increased from 302 to 2,077 mg Cl-/L, removal efficiency of CN- and COD increased from 49.07% to 98.30% and from 23.53% to 49.50%, respectively, at 10 mA/㎠. Current density affected the removal efficiency in a different way. As current density increased at a fixed electrolyte concentration, CN- removal efficiency increased while COD removal efficiency decreased, this is probably due to lowered current efficiency caused by water electrolysis.

Nitrogen Removal by Electrochemical Oxidation Using the Tube Type Electrode (튜브형 전극을 이용한 전기화학적 산화에 의한 질소제거에 관한 연구)

  • Cho, Jae-Jun;Jeong, Jong-Sik;Lee, Jae-Bok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.580-587
    • /
    • 2004
  • The objective of this research is to investigate the electrochemical oxidation process for nitrogen removal in wastewater involving chloride ion and nitrogen compounds. The process experiment of electrochemical oxidation was conducted by using the stainless steel tube type reactor and the $Ti/IrO_2$ as anode. Free chlorine production and current efficiency variation for total nitrogen removal was compared depending on whether electrolyte is added, and the nitrogen type distribution under an operating condition. When chloride was added as electrolyte, it was found that production of free chlorine increased and the concentration of the chloride decreased as retention time passed. The concentration of chloride in influent decreased from 1,660 to 1,198 mg/L at the current density of $6.7A/dm^2$, while concentration of free chlorine increased to 132 mg/L. Current efficiency in removal of ammonium nitrogen was increased when chloride was dosed as electrolyte. It was observed that ammonium nitrogen was oxidized to nitrite and nitrate through electrochemical oxidation and that the concentration of total nitrogen in influent was reduced from 22.58 to 4.00 mg/L at the short retention time of 168 seconds through the electrochemical oxidation of nitrogen.

Treatment of Industrial Wastewater including 1,4-Dioxane by Fenton Process and Electrochemical Iron Redox Reaction Process (Fenton공정과 철 이온의 전기적 산화·환원 반응을 이용한 공정에서 1,4-Dioxane을 포함하는 산업폐수 처리에 관한 연구)

  • Lee, Sang Ho;Kim, Pan Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.375-383
    • /
    • 2007
  • Treatment efficiency research was performed using Fenton process and the electrochemical process in the presence of ferrous ion and hydrogen peroxide for the industrial wastewater including 1,4-Dioxane produced during polymerization of polyester. The Fenton process and the electrochemical Iron Redox Reaction (IRR) process were applied for this research to use hydroxyl radical as the powerful oxidant which is continuously produced during the redox reaction with iron ion and hydrogen peroxide. The results of $COD_{Cr}$ and the concentration of 1,4-Dioxane were compared with time interval during the both processes. The rapid removal efficiency was obtained for Fenton process whereas the slow removal efficiency was occurred for the electrochemical IRR process. The removal efficiency of $COD_{Cr}$ for 310 minutes was 84% in the electrochemical IRR process with 1,000 mg/L of iron ion concentration, whereas it was 91% with 2,000 mg/L of iron ion concentration. The lap time to remove all of 1,4-Dioxane, 330 mg/L in the wastewater took 150 minutes with 1,000 mg/L of iron ion concentration, however it took 120 minutes with 2,000 mg/L of iron ion concentration in the electrochemical IRR process.

Electrochemical Removal Characteristics of Disinfection By-products by Chlorination in Drinking Water (음용수내 발암물질인 염소 소독부산물의 전기화학적 제거 특성)

  • Kwon, Sun-Woo;Lee, Jong-Dae;Sin, Jang-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.364-369
    • /
    • 2004
  • It has been confirmed that some Trihalomethanes (THMs) suspected as carcinogens, can be formed during chlorination for water supply through the reaction of chlorine and humic substances in water. The electrochemical characteristics on activated carbon fiber filter (ACF) electrode were investigated to remove the THMs in the chlorination process of drinking water. The electrochemical removal efficiency depended on the applied voltage and flow rate. In this study, the best result showed that the removal efficiency of THMs was higher than 99%.

COD Removal of Rhodamine B from Aqueous Solution by Electrochemical Treatment

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.21 no.6
    • /
    • pp.655-659
    • /
    • 2012
  • This study elucidates the COD removal of dye (Rhodamine B) through electrochemical reaction. Effects of current density (7.2 to 43.3 $mA/cm^2$), electrolyte type (NaCl, KCl, $Na_2SO_4$, HCl), electrolyte concentration (0.5 to 2.0 g/L), air flow rate (0 to 4 L/min) and pH (3 to 11) on the COD removal of Rhodamine B were investigated. The observed results showed that the increase of pH decrease the COD removal efficiency. Whereas, the increase of current density;NaCl concentration and air flow rate caused the increase of the COD removal of Rhodamine B.

Study on Electrochemical Polishing for Stainless Steel using Micro Pulse Current (미세 펄스전원을 이용한 스테인레스강의 전기화학연마)

  • 이동활;박정우;문영훈
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.127-130
    • /
    • 2003
  • Electrolytic polishing is the anodic dissolution process in the transpassive state. It removes non-metallic inclusions and improves mechanical and corrosion resistance of stainless steel. Electrolytic polishing is normally used to remove a very thin layer of material from the surface of a metal object. An electrolyte of phosphoric, sulfuric and distilled water has been used in this study. In the low current density region, there can be found plateau region and material removal process and leveling process occur successively. In this study, an electrochemical polishing process using pulse current is adopted as a new electrochemical polishing process. In electrochemical machining processes, it has been found that pulse electrochemical processes provide an attractive alternative to the electrochemical processes using continuous current. Hence, this study will discuss the electrochemical polishing processes in low current density region and pulse electrochemical polishing.

  • PDF

Study on Electrochemical Polishing for Stainless Steel 300 Series using Micro Pulse Current (미세 펄스전원을 이용한 스테인레스강 300 계열의 전기화학연마)

  • 이동활;박정우;문영훈
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.388-393
    • /
    • 2003
  • Electrolytic polishing is the anodic dissolution process in the transpassive state. It removes non-metallic inclusions and improves mechanical and corrosion resistance of stainless steel. Electrolytic polishing is normally used to remove a very thin layer of material from the surface of a metal object. An electrolyte of phosphoric acid 50% in vol., sulfuric acid 20% in vol. and distilled water 30% in vol. has been used in this study. In the low current density region, there can be found plateau region and material removal process and leveling process occur successively. In this study, an electrochemical polishing process using pulse current is adopted as a new electrochemical polishing process. In electrochemical machining processes, it has been found that pulse electrochemical processes provide an attractive alternative to the electrochemical processes using continuous current. Hence, this study will discuss the electrochemical polishing processes in low current density region and pulse electrochemical polishing.