• 제목/요약/키워드: electrochemical micro cell

검색결과 57건 처리시간 0.029초

이중 연료 엔진용 이중벽 가스 배관 이종 용접부의 매크로 및 마이크로 전기화학적 특성 (Macro and Micro-electrochemical Characteristics on Dissimilar Welding Metal of Double Wall Gas Pipe for Duel Fuel Engine)

  • 김성종;박재철;한민수;장석기
    • Corrosion Science and Technology
    • /
    • 제9권6호
    • /
    • pp.331-337
    • /
    • 2010
  • This study compared the macro and micro electrochemical characteristics at the local area of welding metal on dissimilar welding parts for type 304 stainless steel (SS) and type 316L SS. The materials are used for double wall gas pipe of duel fuel engine for a ship. The various potentiodynamic experiments were performed several times in 10% ${H_2C_2O_2}{\cdot}{H_2O}$ solution using macro and micro methods, respectively. The micro electrochemical experiments conducted to resolve at local area on cross-section of dissimilar welding materials by micro-droplet cell device. The micro-droplet cell techniques can be used almost electrochemical experiments to resolve corrosion characteristics of the limited electrode area of the metallic surface between wetted spot of working electrode and tip of sharpened capillary tube. The results of macro electrochemical experiments show that resistance of active dissolution reaction at welding zone was high due to low current density by formation of passivation protection film at passive region. According to the micro electrochemical experiment, the corrosion current density of welding zone and bond zone were relatively high.

Pulsed Electrochemical Deposition for 3D Micro Structuring

  • Park, Jung-Woo;Ryu, Shi-Hyoung;Chu, Chong-Nam
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권4호
    • /
    • pp.49-54
    • /
    • 2005
  • In this paper, micro structuring technique using localized electrochemical deposition (LECD) with ultra short pulses was investigated. Electric field in electrochemical cell was localized near the tool tip end region by applying pulses of a few hundreds of nano second duration, Pt-Ir tip was used as a counter electrode and copper was deposited on the copper substrate in mixed electrolyte of 0.5 M $CuSO_4$ and 0.5 M $H_2SO_4$, The effectiveness of this technique was verified by comparison with ECD using DC voltage. The deposition characteristics such as size, shape, surface, and structural density according to applied voltage and pulse duration were investigated. The proper condition was selected based on the results of the various experiments. Micro columns less than $10{\mu}m$ in diameter were fabricated using this technique. The real 3D micro structures such as micro spring and micro pattern were made by the presented method.

마이크로 전해가공에서 임피던스의 영향 (The influence of impedance on micro electrochemical machining)

  • 강성일;주종길;박규열;전종업
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1893-1896
    • /
    • 2003
  • This research aimed to fabricate a micro structure using micro electrochemical machining (${\mu}$-ECM). with a view to that the theory of ${\mu}$-ECM is established accurately in a different way of conventional electrochemical machining. In details, if the impedance is existed in the system, it is difficult to analyze the micro electrochemical reaction efficiently in polarization curve using a potentiodynamic test. Hence, this research investigates the relationships between impedance and electric current measuring with a potentiostatic test applying to a pair or electrode as a constant potential. And this paper examines the influence of temperature of electrolyte on polarization curve for the quantitative analysis of electrochemical reactions.

  • PDF

마이크로 드로플릿 셀 기법을 이용한 예민화 된 304 스테인리스강의 미세전기화학 특성 (Micro-electrochemical Characteristics of Sensitized 304 Stainless steel Using Micro-droplet cell Techniques)

  • 김규섭;이재봉
    • Corrosion Science and Technology
    • /
    • 제9권6호
    • /
    • pp.300-309
    • /
    • 2010
  • The influences of sensitization on localized corrosion resistance of 304 stainless steel, were investigated, using micro-dropletcell techniques. Micro-droplet cell allows one to align the micro-electrode to the desired spot of the working electrode and measure directly local current with the potentiodynamic polarization, linear polarization and a.c. impedance. Micro-electrochemical tests were carried out inside of the grain and on grain boundaries separately. It was found that sensitization decreased the pitting potential, increasing corrosion current density around grain boundaries. Galvanic current density was also measured between grain and grain boundaries.

Electrochemical Catalytic Behavior of Cu2O Catalyst for Oxygen Reduction Reaction in Molten Carbonate Fuel Cells

  • Song, Shin Ae;Kim, Kiyoung;Lim, Sung Nam;Han, Jonghee;Yoon, Sung Pil;Kang, Min-Goo;Jang, Seong-Cheol
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권3호
    • /
    • pp.195-201
    • /
    • 2018
  • To enhance the performance of cathodes at low temperatures, a Cu-coated cathode is prepared, and its electrochemical performance is examined by testing its use in a single cell. At $620^{\circ}C$ and a current density of $150mAcm^{-2}$, a single cell containing the Cu-coated cathode has a significantly higher voltage (0.87 V) during the initial operation than does that with an uncoated cathode (0.79 V). According to EIS analysis, the high voltage of the cell with the Cu-coated cathode is due to the dramatic decrease in the high-frequency resistance related to electrochemical reactions. From XPS analysis, it is confirmed that the Cu is initially in the form of $Cu_2O$ and is converted into CuO after 150 h of operation, without any change in the state of the Ni or Li. Therefore, the high initial cell voltage is confirmed to be due to $Cu_2O$. Because $Cu_2O$ is catalytically active toward $O_2$ adsorption and dissociation, $Cu_2O$ on a NiO cathode enhances cell performance and reduces cathode polarization. However, the cell with the Cu-coated cathode does not maintain its high voltage because $Cu_2O$ is oxidized to CuO, which demonstrates similar catalytic activity toward $O_2$ as NiO.

Implementation of Electrochemical Methods for Metrology and Analysis of Nano Electronic Structures of Deep Trench DRAM

  • Zeru, Tadios Tesfu;Schroth, Stephan;Kuecher, Peter
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제12권2호
    • /
    • pp.219-229
    • /
    • 2012
  • In the course of feasibility study the necessity of implementing electrochemical methods as an inline metrology technique to characterize semiconductor nano structures for a Deep Trench Dynamic Random Access Memory (DT-DRAM) (e.g. ultra shallow junctions USJ) was discussed. Hereby, the state of the art semiconductor technology on the advantages and disadvantages of the most recently used analytical techniques for characterization of nano electronic devices are mentioned. Various electrochemical methods, their measure relationship and correlations to physical quantities are explained. The most important issue of this paper is to prove the novel usefulness of the electrochemical micro cell in the semiconductor industry.

마이크로 박막 전지용 비정질 산화바나듐 박막의 제작 및 전기화학적 특성에 관한 연구 (A Study on The Fabrication and Electrochemical Characterization of Amorphous Vanadium Oxide Thin Films for Thin Film Micro-Battery)

  • 전은정;신영화;남상철;조원일;윤영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.634-637
    • /
    • 1999
  • The amorphous vanadium oxide as a cathode material is very preferable for fabricating high performance micro-battery. The amorphous vanadium oxide cathode is preferred over the crystalline form because three times more lithium ions can be inserted into the amorphous cathode, thus making a battery that has a higher capacity. The electrochemical properties of sputtered films are strongly dependent on the oxygen partial pressure in the sputtering gas. The effect of different oxygen partial pressure on the electrochemical properties of vanadium oxide thin films formed by r.f. reactive sputtering deposition were investigated. The stoichiometry of the as-deposited films were investigated by Auger electro spectroscopy. X-ray diffraction and atomic force microscopy measurements were carried out to investigate structural properties and surface morphology, respectively. For high oxygen partial pressure(>30% ), the films were polycrystalline V$_2$O$_{5}$ while an amorphous vanadium oxide was obtained at the lower oxygen partial pressure(< 15%). Half-cell tests were conducted to investigate the electrochemical properties of the vanadium oxide film cathode. The cell capacity was about 60 $\mu$ Ah/$\textrm{cm}^2$ m after 200 cycle when oxygen partial pressure was 20%. These results suggested that the capacity of the thin film battery based on vanadium oxide cathode was strongly depends on crystallinity.y.

  • PDF

전기화학반응을 수반한 유로채널 형상에 따른 마찰계수에 대한 연구 (Friction Factor in Micro Channel Flow with Electrochemical Reactions in Fuel Cell)

  • 조선아;이필형;한상석;최성훈;황상순
    • 전기화학회지
    • /
    • 제10권4호
    • /
    • pp.245-251
    • /
    • 2007
  • 주어진 연료전지면적에서 반응면적이 넓을수록 성능이 향상되는 연료전지는 좁은 폭의 채널을 여러 개 존재하게 하는 구조를 선호하지만 채널 폭이 좁아질수록 압력이 커지는 문제가 고려되어져야 한다. 그러나 현재 채널 구조에 따른 압력에 대한 연구는 많이 진행되어져 왔지만 대부분 반응을 고려하지 않았으며, 반응을 고려한 경우에 어떤 경향을 나타내는지 알아보는 것이 연료전지 유로설계에 있어 매우 중요하다. 본 논문에서 화학반응을 고려한 평행류, 90도 밴드형, serpentine 세가지 종류의 유로채널를 가진 연료전지를 수치 해석하여 반응을 고려하지 않은 경우와 마찰계수(fRe), 속도, 압력강하를 비교하여 본 결과 parallel과 bend 형태의 채널은 반응을 고려한 경우 반응에 의한 밀도의 감소에 따라 근소하게 감소한 것을 알 수 있었다. 그러나 serpentine채널은 다공성매체인 확산층을 통해 인접한 채널로 가스가 이동하는 bypass flow 영향에 의하여 상대적으로 낮은 압력강하를 나타내는 것을 알 수 있었다.

미세 홈 형성을 위한 마이크로 전해가공에 관한 연구 (A Study on the Electrochemical Micro-machining for Fabrication of Micro Grooves)

  • 박정우;이은상;문영훈
    • 한국정밀공학회지
    • /
    • 제19권4호
    • /
    • pp.101-108
    • /
    • 2002
  • A specially-built EMM (Electrochemical Micro Machining) / PECM (Pulse Electrochemical Machining) cell, a electrode tool filled with non-conducting material, a electrolyte flow control system and a small & stable gap control unit are developed to achieve accurate dimensions of recesses. Two electrolytes, aqueous sodium nitrate and aqueous sodium chloridc arc applied in this study. The farmer electrolyte has better machine-ability than the latter one because of its appropriate changing to the transpassive state without pits on the surface of workpiece. It is easier to control the machining depth precisely by micrometer with pulse current than direct current. This paper also presents an identification method for the machining depth by in-process analysis of machining current and inter electrode gap size. The inter electrode gap characteristics, inc1uding pulse current, effective volumetric electrochemical equivalent and electrolyte conductivity variations, are analyzed based on the model and experiments.

Micro-droplet cell을 이용한 Fe-17Cr 합금의 공식 발생에 대한 연구 (A Study on the Initiation of Pitting Corrosion of Fe-17Cr Alloy Using Micro-Droplet Cell Technique)

  • 김재중;이재봉
    • 대한금속재료학회지
    • /
    • 제46권12호
    • /
    • pp.809-816
    • /
    • 2008
  • The influences of various parameters such as inclusions, surface roughness, exposed areas and chloride ion concentrations on the initiation of pitting of Fe-17Cr alloy were investigated, using micro-droplet cell technique. Micro-droplet cell allows one to align the micro-electrode to the desired spot of the working electrode and measure directly local currents with the potentiodynamic polarization. Micro electrochemical tests were carried out at the inclusions after EDX analysis of inclusion. EDX analysis identified inclusions as Cr-oxides. It was found that some active inclusions among Cr-oxide inclusions acted as initiation sites for pitting corrosion. In addition, the rougher surface and the denser chloride ion concentration offered easier pit initiation sites, causing the more susceptible to pitting corrosion.