• Title/Summary/Keyword: electrochemical coating

Search Result 485, Processing Time 0.029 seconds

Study on the Corrosion and Cavitation Erosion Control of Glass Flake Lining for Mild Steel in Marine Environment (해양환경 중에서 Glass Flake 라이닝 강재의 부식과 캐비테이션 침식 방지에 관한 연구)

  • Lim, Uh Joh;Kim, Seong Hoon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.359-365
    • /
    • 2000
  • Port facilities and marine structures used in marine environment were encountered to corrosion damages because of the influence of $Cl^-$. Generally, to protect these accidents, mainly applied anti-corrosion paint and epoxy coating. But it was still remained erosion-corrosion damage such as impingement erosion, cavitation erosion, deposit attack. There was needs to develope the new coating materials to protective those corrosion damages. This paper, polyester glass flake, vinylester glass flake lining and epoxy coating for SS were investigated electrochemical tests and cavitation erosion test for corrosion behaviour under sea water. The main results obtained are as follows, 1) Surface of epoxy coating appear erosion pin hole but surface of polyester glass flake and vinylester glass flake lining do not appear erosion pin hole after impingement-cavitation erosion test in sea water. 2) Weight loss of polyester glass flake and vinylester glass flake lining do not occur after impingement-cavitation erosion test in sea water. 3) Corrosion current density of polyester glass flake lining less drained than epoxy coating and substrate under corrosion potential.. 4) Corrosion current density of vinylester glass flake lining with three coating less drained than that of polyester glass flake lining with two coating.

  • PDF

Characteristics of Conversion Coating of AZ31 Magnesium Alloy Formed in Chromium-Free Cerium-Based Solution (크롬 프리 세륨 용액에 의한 AZ31 마그네슘 합금의 화성 피막에 대한 특성 평가)

  • Kim, Myung Hwan;Lee, Dong Uk;Kwag, Sam-Tag;Moon, Myung-Jun
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.1
    • /
    • pp.62-68
    • /
    • 2016
  • A chromium-free Ce-based conversion coating formed by immersion in a solution containing cerium chloride and nitric acid on AZ31 magnesium alloy has been studied. The effects of acid pickling on the morphology and the corrosion resistance of the cerium conversion coating were investigated. The corrosion resistance of the conversion coating prepared on AZ31 Mg alloy after organic acid pickling was better than that of inorganic acid pickling. The morphology of the conversion-coated layer was observed using optical microscope and SEM. Results show that the conversion coatings are relatively uniform and continuous, with thickness 1.0 to $1.1{\mu}m$. The main elements of the conversion coating of AZ31 Mg alloy are Mg, O, Al, Ce and Zn by EDS analysis. The electrochemical polarization results showed that the Ce-based conversion coating could reduce the corrosion activity of the AZ31 Mg alloy substrates in the presence of chloride ions.

Polarization Characteristics of Thermal Sprayed Coating Layer (용사코팅층의 분극특성)

  • Ahn, S.H.;Kim, S.J.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.38-43
    • /
    • 2004
  • Thermal spraying onto the metal substrate has been widely used as a technique of the surface treatment in the various industrial field. A wide range of thermal spray technologies exist and all rely on the fundamental process of fusing a metal feedstock, atomizing it and transporting it to the surface of a substrate. Specially, these methods have been taken into account as the protection method against the corrosion. In this study, the polarization characteristics were carried out on the thermal sprayed coating layer immersed in various pH of diluted aqueous solutions at $25^{\circ}C$. Aluminum, Zinc, Ni-base alloy, alumina and polyethylene powder were used with sprayed coating materials. From the polarization curves, the electrochemical corrosion potential($E_{corr}$) and the corrosion current density($I_{corr}$) were investigated.

  • PDF

Duplex Surface Modification with Micro-arc Discharge Oxidation and Magnetron Sputtering for Aluminum Alloys

  • Tong, Honghui;Jin, Fanya;He, Heng
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.21-27
    • /
    • 2003
  • Micro-arc discharge oxidation (MDO) is a cost-effective plasma electrolytic process which can be used to improve the wear and corrosion resistance of Al-alloy parts by forming a alumina coating on the component surface. However, the MDO coated Al-alloy components often exhibit relatively high friction coefficients and low wear resistance fitted with many counterface materials, additionally, the pitting corrosion for the MDO coated AI-alloy components, especially for a thinner alumina coating, often occurs in atmosphere circumstance due to the porous alumina coats. Therefore, a duplex treatment, combining a MDO coated ahumina thin layer with a TiN coating, prepared by magnetron sputtering (MS), has been investigated. The Vicker's microhardness, pin-on-disc, electrochemical measurement, salt spray, XRD and SEM tests were used to characterize and analyze the treated samples. The work demonstrates that the MDO/MS coated samples have a combination of a very low friction coefficient and good wear resistance as well as corrosion since the micro-holes on alumina coating are partly or fully covered by TiN material.

Anti Corrosive Performance of Al and Zn Coatings Deposited by Plasma Arc Thermal Spray Process in Artificial Ocean Water (인공해양환경에서 플라즈마 아크 용사 공법이 적용된 Al 및 Zn 코팅의 부식 방지 성능 평가)

  • Adnin, Raihana Jannat;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.52-53
    • /
    • 2020
  • The thermal spray coating process is being used to protect the metals and alloys from wear, abrasion, fatigue, tribology, and corrosion failure. Therefore, in the present study, Al and Zn was deposited by plasma arc thermal spray process onto the steel substrate and their performance was assessed. The bond adhesion result shows that Al coating has higher value attributed to compact, dense, and less porous compared to Zn coating which contain defects/pores and uneven morphology assessed by scanning electron microscopy (SEM). Electrochemical results show that the Al coating exhibited higher impedance value compared to Zn in artificial ocean water solution at prolonged exposure periods. However, both coatings show the increment in polarization resistance with exposure periods which reveal that porosity of coatings is filled by the corrosion products.

  • PDF

Electrochemical Characteristics of Carbon-coated LiFePO4 as a Cathode Material for Lithium Ion Secondary Batteries

  • Shin, Ho-Chul;Lee, Byung-Jo;Cho, Won-Il;Cho, Byung-Won;Jang, Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.4
    • /
    • pp.168-171
    • /
    • 2005
  • The electrochemical properties of $LiFePO_4$ as a cathode for Li-ion batteries were improved by incorporating conductive carbon into the $LiFePO_4$. X-ray diffraction analysis and SEM observations revealed that the carbon-coated $LiFePO_4$ consisted of fine single crystalline particles, which were smaller than the bare $LiFePO_4$. The electrochemical performance of the carbon-coated $LiFePO_4$ was tested under various conditions. The carbon-coated $LiFePO_4$ showed much better performance in terms of the discharge capacity and cycling stability than the bare $LiFePO_4$. The improved electrochemical performances were found to be attributed to the reduced particle size and enhanced electrical conductivity of the $LiFePO_4$ by the carbon.

Fabrication of Ti/IrO2/Ta2O5 Electrode with High Electrochemical Activity and Long Lifetime (전기화학적 활성과 내구성이 높은 Ti/IrO2/Ta2O5 전극 제조)

  • Kim, Da-eun;Yoo, Jaemin;Lee, Yongho;Pak, Daewon
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.1
    • /
    • pp.34-39
    • /
    • 2017
  • Under a corrosive environment, electrodes that are applied in the water-treatment system need not only very high electrochemical activity for fast reactions, but also high durability for cost saving. Therefore, the fabrication condition of iridium electrodes was examined to produce a more durable iridium electrode in this study. Tantalum was selected as a binder to enhance the durability of the iridium electrode. Investigation of the weight ratio between the catalyst and the binder to improve electrochemical activity was performed. Also, to compare the effect of the different coating amounts of the catalyst, the results of CV (Cyclic Voltammetry) and EIS (Electrochemical Impedance Spectroscopy) were discussed. Furthermore, an ALT(Accelerated Lifetime Test) was designed and applied to the electrodes to determine the conditions for highly durable electrode fabrication.

Electrochemical Properties of Ti-30Ta-(3~15)Nb Alloys Coated by HA/Ti Compound Layer (HA/Ti 복합층 코팅한 Ti-30Ta-(3~15)Nb 합금의 전기화학적 특성)

  • Jeong, Yong-Hoon;Choe, Han-Cheol;Ko, Yeong-Mu
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.2
    • /
    • pp.57-62
    • /
    • 2008
  • Electrochemical properties of Ti-30Ta-$(3{\sim}15)$Nb alloys coated by HA/Ti compound layer have been studied by various electrochemical method. Ti-30Ta binary alloys contained 3, 7, 10, and 15 wt% Nb contents were manufactured by the vacuum furnace system. The specimens were homogenized for 24 hrs at $1000^{\circ}C$. The samples were cut and polished for corrosion test and coating. It was coated with HA/Ti compound layer by magnetron sputter. The HA/Ti non-coated and coated morphology of Ti alloy were analyzed by x-ray diffractometer(XRD) and filed emission scanning electron microscope(FE-SEM). The corrosion behaviors were investigated using potentiodynamic method in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The homoginazed Ti-30Ta-$(3{\sim}15wt%$)Nb alloys showed the ${\alpha}+{\beta}$ phase, and ${\beta}$ phase peak was predominantly appeared with increasing Nb content. The microstructure of Ti alloy was transformed from needle-like structure to equiaxed structure as Nb content increased. HA/Ti composite surface showed uniform coating layer with 750 nm thickness. The corrosion resistance of HA/Ti composite coated Ti-alloys were higher than those of the non-coated samples in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. Especially, corrosion resistance of Ti-Ta-Nb system increased as Nb content increased.

Fabrication of Ni-Mo-based Electrocatalysts by Modified Zn Phosphating for Hydrogen Evolution Reaction

  • Im, Han Seo;Park, Seon Ha;Ha, Hyo Jeong;Lee, Sumin;Heo, Sungjun;Im, Sang Won;Nam, Ki Tae;Lim, Sung Yul
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.54-62
    • /
    • 2022
  • The preparation of low-cost, simple, and scalable electrodes is crucial for the commercialization of water electrolyzers for H2 production. Herein, we demonstrate the fabrication of cathodes through Mo-modified Zn phosphating of Ni foam (NiF) for water electrolysis, which has been largely utilized in surface coating industry. In situ growth of electrocatalytically active layers in the hydrogen evolution reaction (HER) was occurred after 1 min of phosphating to form ZnNiMoPi, and subsequent thermal treatment and electrochemical activation resulted in the formation of ZnNiMoPOxHy. ZnNiMoPOxHy exhibited superior HER performance than NiF, primarily because of the increased electrochemically active surface area of ZnNiMoPOxHy compared to that of bare NiF. Although further investigations to improve the intrinsic electrochemical activity toward the HER and detailed mechanistic studies are required, these results suggest that phosphating is a promising coating method and will possibly advance the fabrication procedure of electrodes for water electrolyzers with better practical applications.

Influences of Coating Cycles and Composition on the Properties of Dimensionally Stable Anode for Cathodic Protection

  • Yoo, Y.R.;Chang, H.Y.;Take, S.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.45-51
    • /
    • 2006
  • Properties of the anode for cathodic protection need low overvoltage for oxygen evolution and high corrosion resistance. It is well known that DSA (Dimensionally Stable Anode) has been the best anode ever since. DSA is mainly composed of $RuO_2$, $IrO_2$, $ZrO_2$, $Co_2O_3$, and also $Ta_2O_5$, $TiO_2$, $MnO_2$ are added to DSA for better corrosion resistance. The lifetime of DSA for cathodic protection is also one of the very important factors. $RuO_2$, $IrO_2$, $RhO_2$, $ZrO_2$ are well used for life extension, and many researches are focused on life extension by lowering oxygen evolution potential and minimizing dissolution of oxide coatings. This work aims to evaluate the influence of constituents of MMO and coating cycles and $ZrO_2$ coating on the electrochemical properties and lifetime of DSA electrodes. From the results of lifetime assessment in the anodes coated with single component, $RuO_2$ coating was more effective and showed longer lifetime than $IrO_2$ coating. Also, an increased coating cycle and an electrochemically coated $ZrO_2$ could enhance the lifetime of a DSA.