DOI QR코드

DOI QR Code

Fabrication of Ti/IrO2/Ta2O5 Electrode with High Electrochemical Activity and Long Lifetime

전기화학적 활성과 내구성이 높은 Ti/IrO2/Ta2O5 전극 제조

  • Kim, Da-eun (Graduate School of Energy and Environment, Seoul National University of Technology & Science) ;
  • Yoo, Jaemin (Graduate School of Energy and Environment, Seoul National University of Technology & Science) ;
  • Lee, Yongho (Graduate School of Energy and Environment, Seoul National University of Technology & Science) ;
  • Pak, Daewon (Graduate School of Energy and Environment, Seoul National University of Technology & Science)
  • 김다은 (서울과학기술대학교 에너지환경대학원) ;
  • 유재민 (서울과학기술대학교 에너지환경대학원) ;
  • 이용호 (서울과학기술대학교 에너지환경대학원) ;
  • 박대원 (서울과학기술대학교 에너지환경대학원)
  • Received : 2016.10.10
  • Accepted : 2016.12.29
  • Published : 2017.01.30

Abstract

Under a corrosive environment, electrodes that are applied in the water-treatment system need not only very high electrochemical activity for fast reactions, but also high durability for cost saving. Therefore, the fabrication condition of iridium electrodes was examined to produce a more durable iridium electrode in this study. Tantalum was selected as a binder to enhance the durability of the iridium electrode. Investigation of the weight ratio between the catalyst and the binder to improve electrochemical activity was performed. Also, to compare the effect of the different coating amounts of the catalyst, the results of CV (Cyclic Voltammetry) and EIS (Electrochemical Impedance Spectroscopy) were discussed. Furthermore, an ALT(Accelerated Lifetime Test) was designed and applied to the electrodes to determine the conditions for highly durable electrode fabrication.

Keywords

References

  1. Basha, C. A., Sendhilb, J., Selvakumarc, K. V., Muniswaranb, P. K. A., and Lee, C. W. (2012). Electrochemical Degradation of Textile Dyeing Industry Effluent in Batch and Flow Reactor Systems, Desalination, 285, 188-197. https://doi.org/10.1016/j.desal.2011.09.054
  2. Bouya, H., Errami, M., Salghi, R., Bazzi, L., Zarrouk, A., Al-Deyab, S. S., Hammouti, B., Bazzi, L., and Chakir, A. (2012). Electrochemical Degradation of Cypermethrin Pesticide on a $SnO_2$ Anode, International Journal of Electrochemical Science, 7(4), 7453.
  3. Chaiyont, R., Badoe, C., Ponce de Leon, C., Nava, J. L., Recio, F. J., Sires, I., Herrasti, P., and Walsh, F. C. (2013). Decolorization of Methyl Orange Dye at $IrO_2-SnO_2-Sb_2O_5$ Coated Titanium Anodes, Chemical Engineering & Technology, 36(1), 123-129. https://doi.org/10.1002/ceat.201200231
  4. Kim, K. W., Lee, E. H., Kim, J. S., Shin, K. H., and Jung, B. I. (2002). Material and Organic Destruction Characteristics of High Temperature-Sintered $RuO_2$ and $IrO_2$ Electrodes, Journal of The Electrochemical Society, 149, 187-192.
  5. Lee, J. Y., Kang, D. K., Lee, K. H., and Chang, D. Y. (2011). An Investigation on the Electrochemical Characteristics of $Ta_2O_5-IrO_2$ Anodes for the Application of Electrolysis Process, Materials Sciences and Applications, 2, 237-243. https://doi.org/10.4236/msa.2011.24030
  6. Li, X., Wang, C., Qian, Y., Wang, Y., and Zhang, L. (2013). Simultaneous Removal of Chemical Oxygen Demand, Turbidity and Hardness from Biologically Treated Citric Acid Wastewater by Electrochemical Oxidation for Reuse, Separation and Purification Technology, 107, 281-288. https://doi.org/10.1016/j.seppur.2013.01.008
  7. Malpass, G. R. P., Miwa, D. W., Miwa, A. C. P., Machado, S. A. S., and Motheo, A. J. (2009). Study of Photo-assisted Electrochemical Degradation of Carbaryl at Dimensionally Stable Anodes(DSA${(R)}$), Journal of Hazardous Materials, 167(1), 224-229. https://doi.org/10.1016/j.jhazmat.2008.12.109
  8. Malpass, G. R., Salazar-Bandaa, G. R., Miwa, D. W., Machadoa, S. A., and Motheoa, A. J. (2013). Comparing Atrazine and Cyanuric Acid Electro-Oxidation on Mixed Oxide and Boron- Doped Diamond Electrodes, Environmental Technology, 34(8), 1043-1051. https://doi.org/10.1080/09593330.2012.733420
  9. Panakoulias, T., Kalatzis, P., Kalderis, D., and Katsaounis, A. (2010). Electrochemical Degradation of Reactive Red 120 using DSA and BDD anodes, Journal of Applied Electrochemistry, 40(10), 1759-1765. https://doi.org/10.1007/s10800-010-0138-2
  10. Pereira, G. F., Rocha-Filho, R. C., Bocchi, N., and Biaggio, S. R. (2012). Electrochemical Degradation of Bisphenol A using a Flow Reactor with a Boron-Doped Diamond Anode, Chemical Engineering Journal, 198, 282-288.
  11. Raghu, S., Lee, C. W., Chellammal, S., Palanichamy, S., and Basha, C. A. (2009). Evaluation of Electrochemical Oxidation Techniques for Degradation of Dye Effluents-A Comparative Approach, Journal of Hazardous Materials, 171, 748-754. https://doi.org/10.1016/j.jhazmat.2009.06.063
  12. Rajkumar, D. and Kim, J. G. (2006). Oxidation of Various Reactive Dyes with In Situ Electro-generated Active Chlorine for Textile Dyeing Industry Wastewater Treatment, Journal of Hazardous Materials, 136(2), 203-212. https://doi.org/10.1016/j.jhazmat.2005.11.096
  13. Shao, L., He, P., Xue, J., and Li, G. (2006). Electrolytic Degradation of Biorefractory Organics and Ammonia in Leachate from Bioreactor Landfill, Water Science and Technology, 53(11), 143-150. https://doi.org/10.2166/wst.2006.347
  14. Vazquez Gomez, L., de Battisti, A., Ferro, S., Cerro, M., Reyna, S., Martinez Huitle, C. A., and Quiroz, M. A. (2012). Anodic Oxidation as Green Alternative for Removing Diethyl Phthalate from Wastewater using Pb/$PbO_2$ and Ti/$SnO_2$ Anodes, CLEAN-Soil, Air, Water, 40(4), 408-415. https://doi.org/10.1002/clen.201000357
  15. Wang, F., Li, S., Xua, M., Wan, Y., Fanga, W., and Yan, X. (2013). Effect of Electrochemical Modification Method on Structures and Properties of Praseodymium Doped Lead Dioxide Anodes, Journal of the Electrochemical Society, 160(2), 53-59.
  16. Wang, H., Sun, D. Z., and Bian, Z. Y. (2010). Degradation Mechanism of Diethyl Phthalate with Electrogenerated Hydroxyl Radical on a Pd/C Gas-diffusion Electrode, Journal of Hazardous Materials, 180(1), 710-715. https://doi.org/10.1016/j.jhazmat.2010.04.095
  17. Wu, W., Huang, Z. H., and Lim, T. T. (2014). Recent Development of Mixed Metal Oxide Anodes for Electrochemical Oxidation of Organic Pollutants in Water, Applied Catalysis A: General, 480, 58-78. https://doi.org/10.1016/j.apcata.2014.04.035
  18. Xu, L. K. and Scantlebury, J. D. (2003). A Study on the Deactivation of an $IrO_2-Ta_2O_5$ Coated Titanium Anode, Corrosion Science, 45, 2729-2740. https://doi.org/10.1016/S0010-938X(03)00108-2
  19. Xue, B., Zhang, Y., and Wang, J. Y. (2011). Electrochemical Oxidation of Bisphenol A on $Ti/SnO_2-Sb_2O_5/PbO_2$ Anode for Wastewater Treatment, Procedia Environmental Sciences, 10, 647-652. https://doi.org/10.1016/j.proenv.2011.09.104