• Title/Summary/Keyword: electrochemical analysis

Search Result 1,082, Processing Time 0.025 seconds

A New Algorithm Design for the Real-time Electrochemical Impedance Monitoring System

  • Chang, Byoung-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.154-158
    • /
    • 2012
  • It is generally known that electrochemical impedance spectroscopy is a powerful technique and its real-time application has been demanded for prompt observations on instantaneous electrochemical changes. Nevertheless, long measurement time and laborious analysis procedures have hindered development of it. Solving the problems, here I report of a new algorithm design for development of a real-time electrochemical impedance monitoring system, which potentially provides a guideline in developing monitoring systems of electric vehicles batteries and other electrochemical power plants. The significant progress in this report is employment of the parallel processing protocol which connects independent sub functions to successfully operate with avoiding mutual interruptions. Therefore, all the processes required to monitor electrochemical impedance changes in realtime are properly operated. To realize the conceptual scheme, a Labview program was coded with sub functions units which conduct their processes individually and only data are transferred between them through the parallel pipelines. Finally, measured impedance spectra and analysis results are displayed, which are synchronized according to the time of change.

Simple and Ultrasensitive Chemically Amplified Electrochemical Detection of Ferrocenemethanol on 4-Nitrophenyl Grafted Glassy Carbon Electrode

  • Koh, Ahyeon;Lee, Junghyun;Song, Jieun;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.286-292
    • /
    • 2016
  • Chemically amplified electrochemical detection, redox-active probe being amplified its electrochemical anodic current by a sacrificial electron donor presenting in solution, holds great potential for simple and quantitative bioanalytical analysis. Herein, we report the chemically amplified electrochemical analysis that drastically enhanced a detection of ferrocenemethanol (analyte) by ferrocyanide (chemical amplifier) on 4-nitrophenyl grafted glassy carbon electrodes at $60^{\circ}C$. The glassy carbon electrode grafted with a 4-nitrophenyl group using an electrochemical reduction suppressed the oxidation of ferrocyanide and thus enabled detection of ferrocenemethanol with excellent selectivity. The ferrocenemethanol was detected down to an nM range using a linear sweep voltammetry under kinetically optimized conditions. The detection limit was improved by decreasing the concentration of the ferrocyanide and increasing temperature.

A Study on the Electrochemical Micromachining with Various Pulse Currents (전원특성에 따른 마이크로 전해가공에 관한 연구)

  • 박정우;이은상;문영훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.942-945
    • /
    • 2001
  • Pulse electrochemical micromachining offers significant improvements in dimensional accuracy as compared with conventional electrochemical machining. One primary issue in pulse electrochemical micromachining is to identify and control machining depth as well as interelectrode gap size. This paper presents an identification method for the machining depth by in-process analysis of machining current and interelectrode gap size. The inter electrode gap characteristics, including pulse current, effective volumetric electrochemical equivalent and electrolyte conductivity variations, are analysed based on the model and experiments.

  • PDF

Singular Point of Voltammetric Impedance Data and its Application in Analyzing Voltammetry Data

  • Chang, Byoung-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.149-156
    • /
    • 2018
  • In this technical note, I report the analysis of electrochemical impedance data measured with potential sweeping. Even though the instruments for voltammetric impedance measurements have been developed for decades using different approaches, their applications are limited due to the lack of well-established protocols to easily analyze voltammetry data. To fill this gap, the singular point of the specific potential is considered that is only determined by the standard/formal potential and the transfer coefficient and is independent of the kinetics and experimental parameters (including revertability) of faradaic reactions. Taking the advantage of its inertness, I suggest an approach employing the singular point as a reference to obtain general electrochemical information. As all the concepts and methods are verified with numerical simulations, this technique is expected to be applied for complex reactions involving electrochemical and chemical reaction mechanisms.

Investigation on Trend Removal in Time Domain Analysis of Electrochemical Noise Data Using Polynomial Fitting and Moving Average Removal Methods

  • Havashinejadian, E.;Danaee, I.;Eskandari, H.;Nikmanesh, S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.115-123
    • /
    • 2017
  • Electrochemical noise signals in many cases exhibit a DC drift that should be removed prior to further data analysis. Polynomial fitting and moving average removal method have been used to remove trends of electrochemical noise (EN) in time domain. The corrosion inhibition of synthesized schiff base N,N'-bis(3,5-dihydroxyacetophenone)-2,2-dimethylpropandiimine on API-5L-X70 steel in hydrochloric acid solutions were used to study the effects of drifts removal methods on noise resistance calculation. Also, electrochemical impedance spectroscopy (EIS) was used to study the corrosion inhibition property of the inhibitor. The results showed that for the calculation of $R_n$, both methods were effective in trend removal and the polynomial with m=4 and MAR with p=40 were in agreement.

Synthesis and Characterization of Phase Pure NiO Nanoparticles via the Combustion Route using Different Organic Fuels for Electrochemical Capacitor Applications

  • Srikesh, G.;Nesaraj, A. Samson
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.16-25
    • /
    • 2015
  • Transition metal oxide nanocrystalline materials are playing major role in energy storage application in this scenario. Nickel oxide is one of the best antiferromagnetic materials which is used as electrodes in energy storage devices such as, fuel cells, batteries, electrochemical capacitors, etc. In this research work, nickel oxide nanoparticles were synthesized by combustion route in presence of organic fuels such as, glycine, glucose and and urea. The prepared nickel oxide nanoparticles were calcined at 600℃ for 3 h to get phase pure materials. The calcined nanoparticles were preliminarily characterized by XRD, particle size analysis, SEM and EDAX. To prepare nickel oxide electrode materials for application in supercapacitors, the calcined NiO nanoparticles were mixed with di-methyl-acetamide and few drops of nafion solution for 12 to 16 h. The above slurry was coated in the graphite sheet and dried at 50℃ for 2 to 4 h in a hot air oven to remove organic solvent. The dried sample was subjected to electrochemical studies, such as cyclic voltammetry, AC impedance analysis and chrono-coulometry studies in KOH electrolyte medium. From the above studies, it was found that nickel oxide nanoparticles prepared by combustion synthesis using glucose as a fuel exhibited resulted in low particle diameter (42.23 nm). All the nickel oxide electrodes have shown better good capacitance values suitable for electrochemical capacitor applications.

Complex Capacitance Analysis of Impedance Data and its Applications (임피던스 복소캐패시턴스 분석법의 이론 및 응용)

  • Jang, Jong-Hyun;Oh, Seung-Mo
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.223-234
    • /
    • 2010
  • In this review, the theory and applications of the complex capacitance analysis, which can be utilized in analyzing capacitor-like electrochemical systems, were summarized. Theoretically, it was suggested that the imaginary capacitance plots (Cim vs. log f) can provide a simple way to analyze electrochemical characteristics of capacitive systems, without complicated mathematical calculations. The usefulness of the complex capacitance analysis has been demonstrated by applying it to analyze EDLC characteristics of practical porous carbon electrodes, ionic conductivities inside small pores, and ionic resistances in the catalyst layers of polymer electrolyte membrane fuel cells.

Electrochemical and Raman Spectroscopy Analysis for D- and L-Tryptophan-b-Cyclodextrin Inclusion Complexes

  • Jeong, Yu-Ra;Lee, So-Ra;Son, Pyeong-Soo;Choi, Seong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.451-460
    • /
    • 2015
  • An enantioselective recognition of D- and L-tryptophan (Trp)-b-cyclodextrin (CD) inclusion complex was performed using electrochemical and FT-Raman spectroscopic analysis. From the electrochemical analysis, the selectivity coefficient ($K_{DL}$) of b-CD inclusion complexes was found higher than that of the D- and L-Trp in phosphate buffered saline (PBS, pH=7.0) solution. The percentage of enantioselectivity ($I_{%{ee}}$) for peak current of D-Trp-b-CD inclusion complexes was observed higher than that of L-Trp-b-CD inclusion complexes in PBS solution. From Raman spectroscopy, chemical shift difference (D, $cm^{-1}$) for the C=C stretch, ring vibration, and ring breathing of D-Try-b-CD inclusion complex were observed higher than that of L-Trp-b-CD inclusion complex. The electrochemical and Raman spectroscopic analyses were found very useful for chiral detection of racemic amino acid in the presence of b-CD.

Fabrication of Multilayered Structures in Electrochemical Etching using a Copper Protective Layer (구리 보호층을 이용한 전해에칭에서의 다층구조 제작)

  • Shin, Hong-Shik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.2
    • /
    • pp.38-43
    • /
    • 2019
  • Electrochemical etching is a popular process to apply metal patterning in various industries. In this study, the electrochemical etching using a patterned copper layer was proposed to fabricate multilayered structures. The process consists of electrodeposition, laser patterning, and electrochemical etching, and a repetition of this process enables the production of multilayered structures. In the fabrication of a multilayered structure, an etch factor that reflects the etched depth and pattern size should be considered. Hence, the etch factor in the electrochemical etching process using the copper layer was calculated. After the repetition process of electrochemical etching using copper layers, the surface characteristics of the workpiece were analyzed by EDS analysis and surface profilometer. As a result, multilayered structures with various shapes were successfully fabricated via electrochemical etching using copper layers.

Surface Treatment with CO2 to Improve Electrochemical Characteristics of Carbon Felt Electrode for VRFB

  • Yechan Park;Sunhoe Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.131-138
    • /
    • 2023
  • The carbon felt is usually hired as electrodes for vanadium redox flow battery (VRFB). In the study, surface modification of carbon felt under CO2 atmosphere with variables of operating various temperature ranges between 700℃ and 900℃. The qualitative and quantitative analysis were carried out such as scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) to observe degree of surface modification. Result of XPS analysis confirmed increase of carbon and oxidation functional group on the surface with increase of temperature. SEM image was discovered similar phenomena. Electrochemical characteristics such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) revealed the improved electrode performance with increase of temperature. However, the electrochemical performance under treatments temperature of 900℃ was less than that of under treatment temperature of 850℃ due to weight loss at the treatment temperature of 900℃. From the CV and EIS results, the best electrochemical characteristics was at the temperature of 850℃. That of at the temperature of 900℃ was decreased due to weight loss. The energy efficiencies (EE) obtained from full cell test were 69.37, 80.76, 82.45, and 75.47%, at the temperature of 700, 800, 850, and 900℃, respectively.