• Title/Summary/Keyword: electrochemical activation

Search Result 229, Processing Time 0.021 seconds

Effect of Specific Surface Area of Activated Carbon Fiber on Harmful Gas Adsorption and Electrochemical Responses (활성탄소섬유의 비표면적에 따른 유해가스 흡착 및 전기화학적 감응 특성)

  • Kang, Jin Kyun;Chung, Yong Sik;Bai, Byong Chol;Ryu, Ji Hyun
    • Journal of Adhesion and Interface
    • /
    • v.21 no.2
    • /
    • pp.51-57
    • /
    • 2020
  • Recently, there has been growing interest in the study of removal of harmful and hazardous pollutants emitted by industrial activities. In this study, we have developed porous activated carbon fibers prepared by a water vapor activation method and analyzed the adsorptions of the harmful gases with electrochemical responses of activated carbon fibers. To control the uniformity of pore structures, active reaction areas, and active sites, the reaction conditions of activation temperatures were varied from 750 to 850 ℃ with the predetermined reaction time intervals (30 to 240 min). The SO2 and NO gas adsorptions of activated carbon fibers prepared by various reaction conditions were analyzed and monitored by electrochemical sensor responses. In particular, the activated carbon fibers prepared at the reaction temperature of 850 ℃ and time of 45 min showed the highest specific surface area (1,041.9 ㎡/g) and pore characteristics (0.42 ㎤/g), and excellent adsorption capabilities of SO2 (1.061 mg/g) and NO (1.210 mg/g) gases, respectively.

Lornoxicam & Tenoxicam Drugs as Green Corrosion Inhibitors for Carbon Steel in 1 M H2SO4 Solution

  • Fouda, A.S.;El-Defrawy, A.M.;El-Sherbeni, M.W.
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.47-56
    • /
    • 2013
  • Inhibition performance of Lornoxicam & Tenoxicam against corrosion of carbon steel in 1M $H_2SO_4$ solutions was investigated by weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. The inhibition efficiency increased with increasing inhibitor's concentration, but decreased with increase in temperature. Potentiodynamic polarization curves showed that, the inhibitors were of mixed type. The apparent activation energy ($E^*_a$) and other thermodynamic parameters for the corrosion process have also been calculated and discussed. The inhibition of carbon steel corrosion is due to the adsorption of the inhibitor molecules on the surface, which follows Temkin adsorption isotherm. The mechanism of inhibition was discussed in the light of the chemical structure of the undertaken inhibitors.

Electrochemical Impulse Oscillations at the Platinum Group Electrode Interfaces (백금족 전력 계면에서 전기화학적 Impulse 발진)

  • 전장호;손광철;라극환
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.3
    • /
    • pp.143-151
    • /
    • 1995
  • The electrochemical impulse oscillations of the cathodic currents at the platinum group (Pt, Pd) electrode/(0.05M KHC$_{8}H_{4}O_{4}$) buffer solution interfaces have been studied using voltammetric, chronoamperometric, and electrochemical impedance methods. The periodic impulses of the cathodic currents are the activation controlled currents due to the hydrogen evolution reaction, and depend on the fractional surface coverage of the adsorbed hydrogen intermediate and potential. The oscillatory mechanism of the cathodic current impulses is connected with the unstable steady state of negative differential resistance. The widths and periods of the cathodic current impulses are 4ms or 5ms and 152.5ms or 305ms, respectively. The H$^{+}$ discharge reaction step is 38 or 61 times faster thatn the recombination reaction steps and the H$^{+}$ mass transport processes. The atom-atom recombination reaction step is twice faster thatn the atom-ion recombination reaction step. The two kinds of active sites corresponding to the atom-atom and atom-ion recombination reaction steps exist on the platinum group electrode surfaces.

  • PDF

Evaluation of Electrochemical and Mechanical Characteristics in MIG Welding Parts of Dissimilar Al Alloys for Ship (선박용 이종 알루미늄 합금 미그 용접부의 기계적 및 전기화학적 특성 평가)

  • Woo, Yong-Bin;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.1
    • /
    • pp.34-40
    • /
    • 2009
  • In the study, it was carried out dissimilar metal welding on materials for Al ship. The electrochemical and mechanical characteristics evaluated for specimen welded by ROBOT. The hardness of welding zone is lower than those of heat affected zone and base metal. At the result of tensile test, the specimen welded with ER5183 welding material presented excellent property compared with ER5556. The polarization trend for the base metal and welding metal showed the effects of concentration polarization due to oxygen reduction and activation polarization due to hydrogen generation. At the Tafel experiments result, the corrosion density in welded with ER5183 welding material presented the lowest value.

Electrochemical model for the simulation of solid oxide fuel cells (고체산화물연료전지의 시뮬레이션을 위한 전기화학모델)

  • Park, Joon-Guen;Lee, Shin-Ku;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.63-66
    • /
    • 2008
  • This study presents 0-dimensional model for solid oxide fuel cells(SOFCs). The physics of the cell and the simplifying assumptions are presented, and only hydrogen participates in the electrochemical reaction. The electrical potential is predicted using this model. The Butler-Volmer equation is used to describe the activation polarization and the exchange current density is changed according to the partial pressure of reactants and the temperature. The electrical conductivities of electrodes and an electrolyte are calculated for the ohmic polarization. Material characteristics and temperature affect those factors. Analysis of concentration polarization based on transport of gaseous species through porous electrodes is incorporated in this model. Both binary diffusion and Knudsen diffusion are considered as the diffusion mechanism. For validation, simulation results at this work are compared with our experimental results and numerical results by other researchers.

  • PDF

Activated Carbons as Electrode Materials in Electric Double-Layer Capacitors I. Electrochemical Properties of Activated Carbons in Relation to their Porous Structures and Surface Oxygen Functional Groups

  • Kim, Chang-Hee;Pyun, Su-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.819-826
    • /
    • 2003
  • This article is concerned with the overview of activated carbons as electrode materials in electric double-layer capacitors. Firstly, this article introduced various types of activated carbons with their precursors and manufacturing conditions which can be divided into two main steps of the carbonization and activation processes. Secondly, the present article gave the detailed discussion about the porous structures and examined previous works on the electrochemical behaviors of activated carbons in relation to their porous structures, along with our recent works. Finally, this article characterized the surface oxygen functional groups and presented their influence on the electrochemical properties of activated carbons by reviewing our recent results.

Electrochemical Behavior and Biocompatibility of Co-Cr Dental Alloys

  • Kang, Jung-In;Yoon, Jun-Bin;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.107-107
    • /
    • 2015
  • In order to investigate electrochemical behavior and biocompatibility of Co-Cr dental alloy by electrochemical corrosion test and MTT assay, the xCo-25Cr-yW-zNi alloys were used in this study. Samples of Co-Cr-W-Ni alloys were manufactured using arc melting furnace. The microstructure of the alloys was examined by optical microscopy (OM), Field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), MTT assay, and corrosion test. Corrosion resistance increased slightly as cobalt (Co) content increased. And bioactivity was concerned with nickel (Ni) and tungsten (W). Biocompatibility of Co-Cr alloy depended on Ni and W contents.

  • PDF

Effect of Neodymium concentration on electrochemical properties of 925 silver (Ag925의 전기화학적 특성에 미치는 네오디뮴 함량의 영향)

  • Shin, Byung-Hyun;Jung, Seungjin;Chung, Wonsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.2
    • /
    • pp.71-76
    • /
    • 2021
  • Ag925, silver with added copper, is popular alloy due to its low price. However, it has a difficult to use because of the low corrosion resistance. In various alloys, neodymium (Nd) works as an element to improve corrosion resistance by reacting with interstitial elements in the alloy. When 1.5 wt. % Neodymium was added to Ag925, the potential on the activated polarization in a potentiodynamic polarization test was increased from -0.15 V to -0.05 V. Ag925 with added neodymium showed the passivation after activation polarization. But When the potential increased around 50 mV, the current density is increased to 3 × 10-3. Ag925 with the 1.5 wt. % Nd had the low corrosion rate.

Tracing Resistances of Anion Exchange Membrane Water Electrolyzer during Long-term Stability Tests

  • Niaz, Atif Khan;Lee, Woong;Yang, SeungCheol;Lim, Hyung-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.358-364
    • /
    • 2021
  • In this study, an anion exchange membrane water electrolysis (AEMWE) cell was operated for ~1000 h at a voltage bias of 1.95 V. Impedance spectra were regularly measured every ~ 100 h, and changes in the ohmic and non-ohmic resistance were traced as a function of time. While there was relatively little change in the I-V curves and the total cell resistance during the long-term test, we observed various electrochemical phenomena in the cell: 1) initial activation with a decrease in both ohmic and non-ohmic resistance; 2) momentary and non-permanent bubble resistance (non-ohmic resistance) depending on the voltage bias, and 3) membrane degradation with a slight increase in the ohmic resistance. Thus, the regular test protocol used in this study provided clear insights into the performance degradation (or improvement) mechanism of AEMWE cells.