• Title/Summary/Keyword: electrochemical activation

Search Result 229, Processing Time 0.023 seconds

Electrode characteristics of $AB_2$ type hydrogen storage alloy modified by Cr, La addition and fluorination ($AB_2$계 수소저장합금의 전극특성에 미치는 Cr, La 첨가 효과 및 표면 불화처리 효과)

  • Chang I.;Lee B. H.;Cho W. I.;Jang H.;Cho B. W.;Yun K. S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.45-51
    • /
    • 1998
  • [ $AB_2-type$ ] alloy, one kind of hydrogen storage alloys used as an anode of Ni-MH batteries, has large discharge capacity but has remaining problems regarding initial activation, cycle life and self-discharge. This study investigates the effects of Cr-addition and fluorination after La-addition on $Zr_{0.7}Ti_{0.3}V_{0.4}Mn_{0.4}Ni_{1.2}$, composition $AB_2-type$ alloy. EPMA and SEM surface analysis techniques were used and the crystal structure was characterized by XRD analysis. In addition, electrodes were fabricated out of the alloys and characterized by constant current cycling test, electrochemical impedance spectroscopy and potentiodynamic polarization. Cr-addition was found to be effective to cycle life and self-discharge but ineffective to initial activation due to formation of stable oxide film on surface. Fluorination after La-addition to the alloys improved initial activation remarkably due to formation of highly reactive particles on surface.

Specific Surface Area Characteristic Analysis of Porous Carbon Prepared from Lignin-Polyacrylonitrile Copolymer by Activation Conditions (리그닌-PAN 공중합체로 제조한 다공성 탄소 소재의 활성화 처리 조건에 따른 비표면적 특성 연구)

  • LEE, Hyunsu;KIM, Seokju;PARK, Mi-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.299-314
    • /
    • 2021
  • In this study, we investigated the effect of temperature on specific surface area and electrochemical properties when lignin-based porous carbon (LBPC) with potassium hydroxide (KOH) is activated. After preparing LBPCs using lignin-polyacrylonitrile (PAN) copolymer, which was synthesized by graft polymerizing lignin and acrylonitrile as a precursor, activated LBPCs (KA-LBPC-6, 7, 8, 9) were manufactured by activating LBPC with KOH at 600℃, 700℃, 800℃ and 900℃. To identify the surface characteristics of KA-LBPC, observations were made with a scanning electron microscopy (SEM), and the pore characteristics were identified via specific surface area analysis. The electrochemical properties were analyzed using a three-electrode system. The experiment has shown that micropores formed by activation can be observed in SEM images. KA-LBPC-7 had the best pore characteristics among KA-LBPCs, with a specific surface area of 2480.1 m2/g, a micropore volume of 0.64 cm3/g, and a mesopore volume of 0.76 cm3/g. KA-LBPC-7 showed the best electrochemical properties with a specific capacitance of 151.3 F/g at the scan rate of 2 mV/s.

Electrochemical Properties of PAN-based Carbon Fibers Tow Electrode Using Organic/inorganic Nanocomposite and Its Application of Non-enzymatic Sensor (유/무기 나노 복합체를 이용한 PAN계 탄소섬유 토우 유연 전극의 전기화학적 특성 평가 및 비효소 전기화학 센서의 활용)

  • Min-Jung Song
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.233-237
    • /
    • 2024
  • This study is about the fabrication of a flexible electrode based on PAN-based carbon fibers tow using organic/inorganic nanocomposite and its application of non-enzymatic sensor. The organic/inorganic nanocomposite was composed of the conductive polymer polyaniline (PANI) and the metal oxide CuO. And glucose was used as the target of the electrochemical sensor. Commercialized CFTs were pretreated through heat treatment for desizing and electrochemical oxidation for activation. This nanocomposite was sequentially synthesized on the pretreated CFT surface using electrochemical polymerization and electrochemical deposition. Finally, the CFT/PANI/CuO NPs electrode was obtained. The electrochemical properties and sensing performance of the CFT/PANI/CuO NPs electrode were analyzed using chronoamperometry (CA), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The sensitivity of the CFT/PANI/CuO NPs electrode was about 8.352 mA/mM (in a linear range of 0.445~6.674 mM) and 3.369 mA/mM (in a linear range of 6.674~50 mM), respectively. So, the CFT/PANI/CuO NPs electrode exhibited the enhanced sensing performances due to unique properties such as small peak potential separation, low electron transfer resistance, and large specific surface area.

Highly Ordered Nanotubular Surface of Ti-25Ta-xHf Alloys for Dental Applications

  • Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.138-138
    • /
    • 2015
  • In this study, highly ordered nanotubular surface of Ti-25Ta-xHf alloys for dental applications was researched. Ti-25Ta-xHf alloys were contained from 0% to 15% Hf content. Formation of nanotubular structure was achieved by an electrochemical method in 1M $H_3PO_4$ electrolytes containing 0.8%wt. % NaF.

  • PDF

Nanotube Morphology Change of Ti-6Al-4V Alloys by Heat Treatment

  • Kim, Sung-Hwan;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.194-194
    • /
    • 2013
  • In order to investigate nanotube morphology change of Ti-6Al-4V alloys by heat treatments, the Ti-6Al-4V alloys were used in this study. In non-treated Ti-6Al-4V alloy case, nanotubes only exhibited at ${\alpha}$ phase region with dissolved V-oxide area of ${\beta}$ phase. However, in Ti-6Al-4V alloy at $800^{\circ}C$ WQ case, nanotubes exhibited at both ${\alpha}$ and ${\beta}$ phase region. Electrochemical corrosion studies showed that the nanotubular alloy at $800^{\circ}C$WQ possesses slightly higher corrosion resistance than non-treated nanotubular alloy.

  • PDF

Flow-Accelerated Corrosion Behavior of SA106 Gr.C Steel in Alkaline Solution Characterized by Rotating Cylinder Electrode

  • Kim, Jun-Hwan;Kim, In-Sup
    • Nuclear Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.595-604
    • /
    • 2000
  • Flow-Accelerated Corrosion Behavior of SA106 Gr.C steel in room temperature alkaline solution simulating the CANDU primary water condition was studied using Rotating Cylinder Electrode. Systems of RCE were set up and electrochemical parameters were applied at various rotating speeds. Corrosion current density decreased up to pH 10.4 then it increased rapidly at higher pH. This is due to the increasing tendency of cathodic and anodic exchange half-cell current. Corrosion potential shifted slightly upward with rotating velocity. Passive film was formed from pH 9.8 by the mechanism of step oxidation and the subsequent precipitation of ferrous species into hydroxyl compound. Above pH 10.4, the film formation process was active and the film became stable. Corrosion current density showed increment in pH 6.98 with the rotating velocity, while it soon saturated from 1000 rpm above pH 9.8. This seems that activation process which represents formation of passive film on the bare metal surface controls the entire corrosion process

  • PDF

Electrochemically Fromed Nanotube Shape on Ternary Ti Alloy with Hf Content

  • Kim, Jeong-Jae;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.106-106
    • /
    • 2015
  • In this study, we investigated electrochemically formed nanotube shape on ternary Ti-25Ta-xHf alloys with Hf contents. Ti-25Ta-xHf (x=0~15 wt.%) alloys were manufactured by vacuum arc-melting furnace. The obtained ingots were homogenized in an argon atmosphere at $1050^{\circ}C$ for 2h and then water quenching. The specimens were cut from ingots to 4 mm thickness and first ground and polished using SiC paper (grades from #100 to #2000). The anodization treatments on Ti-25Nb-xHf alloys were carried out at room temperature for experiments. The formation of nanotubular film was conducted by electrochemical method in mixed electrolytes with 1 M $H_3PO_4$ + 0.8 wt. % NaF at 30 V for 2 h. The morphologies of nanotube depended on the Hf content in Ti-25Ta-xHf ternary system.

  • PDF

THE SURFACE CHARACTERISTICS OF NITROGEN ION IMPLANTED IRON ALUMINIDES

  • Choe, Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.393-400
    • /
    • 1999
  • The surface characteristics of nitrogen ion implanted iron aluminides were investigated using various electrochemical methods in $H_2$$SO_4$+KSCN and HCl solutions. Nitrogen ion implantation was performed with doses of $3.0$\times$10^{17}$ /ions/$\textrm{cm}^2$ at an energy of 150keV. Nitrogen ion implanted iron aluminides increased the corrosion potential and significantly decreased grain boundary activation, the active current density, and passive current density. Nitrogen implanted iron aluminides with Mo increased the corrosion, pitting potential, repassivation potential and │$E_{pit}$-$E_{corr}$│ value. Whereas, implanted iron aluminides containing boron reduced the pitting and repassivation potential in comparison with nitrogen implanted iron aluminides with Cr and Mo.o.

  • PDF

The Comparative Study in the Oxygen Atom Transfer Reaction by Ruthenium Mono-Oxo Complexes

  • Seok, Won K.;Son, Yung J.;Moon, Sung W.;Lee, Heung N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1084-1090
    • /
    • 1998
  • The oxidation of triphenylphosphine by [(tpy)(phen)RuⅣ(O)]2+ and [(bpy)(p-tert-butylpy)RuⅣ(0)]2+ (tpy is 2,2': 6',2"-terpyridine, phen is 1,10-phenanthroline, bpy is 2,2'-bipyridine, and p-tert-butylpy is para-tertbutylpyridine) in CH3CN has been studied. Experiments using 18O-labeled complex show the oxyl group transfer from [RuⅣ=O]2+ to triphenylphosphine occured quantitatively within experimental error. Kinetic data were fit to a second-order for [RuⅣ=O]2+ and [PPh3]. The initial product, [RuⅡ-OPPh3]2+, was formed as an observable intermediate and then underwent slow solvolysis. The reaction proceeded as endothermic in activation enthalpy and a decrease in activation entropy. The oxidative reactivity of four representative ruthenium mono-oxo oxidants against triphenylphosphine was compared. These systems have been utilized as electrochemical oxidative catalysts.

A Study on the Initial Performance Degradation of Hydrogen-Fueled Ceramic Fuel Cell with Atomic Layer-Deposited Thin-Film Electrolyte (수소연료를 이용하는 원자층증착 박막전해질 세라믹연료전지의 초기성능 저하에 관한 연구)

  • JI, SANGHOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.410-416
    • /
    • 2021
  • The initial electrochemical performance of ceramic fuel cell with thin-film electrolyte was evaluated in terms of peak power density ratio, open circuit voltage ratio, and activation/ohmic resistance ratios at 500℃. Hydrogen and air were used as anode fuel and cathode fuel, respectively. The peak power density ratio reduced as ~17% for 40 minutes, which rapidly decreased in the early stage of the performance evaluation but gradually decreased. The open circuit voltage ratio decreased with respect time; however, its time behavior was remarkably different with the reduction behavior of the peak power density ratio. The activation resistance ratio increased as ~15% for 40 minutes, which was almost similar with the time behavior of the peak power density ratio.