• Title/Summary/Keyword: electrocardiography sensor

Search Result 16, Processing Time 0.025 seconds

One point detection electrocardiography sensor using MEMS and flexible printed circuit technology (MEMS 기술과 유연인쇄회로기판 기술을 이용한 단일지점 검침 심전도 센서)

  • Kim, Hong-Lae;Lee, Chung-Il;Lee, Chung-Keun;Lee, Myoung-Ho;Kim, Hyun-Jun;Choi, Eui-Jung;Kim, Yong-Jun
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.359-364
    • /
    • 2009
  • This paper presents flexible electrocardiography(ECG) sensors using micro electro mechanical systems(MEMS) and flexible printed circuit(FPC) technology. By using FPC technology, ECG sensors which consisted of an outer hook-shaped electrode and an inner circular-shaped electrode were fabricated on the polyimide substrate. Thereafter, the bipolar ECG sensor was miniaturized using MEMS technology. The ECG measurement capability was examined by attaching the sensor to the human chest and wrist. Performance of the proposed sensors was then compared with ECG measured by commercial Ag/AgCl electrodes. It was verified that ECG could be measured using proposed sensors at only single body.

The Verification of Photoplethysmography Using Green Light that Influenced by Ambient Light (녹색광을 이용한 반사형 광용적맥파측정기의 주변광 간섭시 신호측정)

  • Chang, K.Y.;Ko, H.C.;Lee, J.J.;Yoon, Young Ro
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.125-131
    • /
    • 2014
  • The purpose of this study is to verify the utility of reflected photoplethysmography sensor using two green light emitting diodes that influenced by ambient light. Recently it has been studied that green light emitting diode is suitable for light source of reflected photoplethysmography sensor at low temperature and high temperature. Another study showed that, green light is better for monitoring heart rate during motion than led light. However, it has a bad characteristic about ambient light noise. To verify the utility of reflected photoplethysmography sensor using green light emitting diode, this study measures the photoplethysmography signal that is distorted by ambient light and will propose a solution. This study has two parts of research method. One is measurement system that composed sensor and board. The sensor is made up PE-foam and Non-woven fabric for flexible sensor. The photoplethysmography signal is measured by measurement board that composed high-pass filter, low-pass filter and amplifier. Ambient light source is light bulb and white light emitting diode that has three steps brightness. Photoplethysmography signal is measured with lead II electrocardiography signal at the same time and it is measured at the finger and radial artery for 1 minute, 1000 Hz sampling rate. The lead II electrocardiography signal is a standard signal for heart rate and photoplethysmography signal that measured at the finger is a standard signal for waveform. The test is repeated 3 times using three sensor. The data is processed by MATLAB to verify the utility by comparing the correlation coefficient score and heart rate. The photoplethysmography sensor using two green light emitting diodes is shown better utility than using one green light emitting diode and red light emitting diode at the ambient light. The waveform and heart rate that measured by two green light emitting diodes are more identical than others. The amount of electricity used is less than red light emitting diode and error peak detectability factor is the lowest.

Study on Reusable Electrodes for Personal Electrocardiography

  • Kim, Jonghoon;Yoon, Gilwon
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.340-344
    • /
    • 2018
  • Electrodes are an important part of electrocardiography (ECG); disposable electrodes have been extensively used. However, personal ECG monitoring devices for Internet of Things applications require reusable electrodes. As there have been no systematic studies on the characteristics of reusable electrodes to date, we conducted this study to assess the performance and feasibility of electrodes with different materials. We built reusable electrodes using twelve different metallic materials, including commonly used copper, silver, zinc, plating materials, chemically inert titanium, stainless steel, and aluminum. Each electrode was fabricated to a size of $5{\times}10mm$. Their characteristics such as offset, baseline drift, stabilization time, and chemical inertness were compared. A personal ECG monitoring system was used to test the manufactured electrodes. The performances of the Ag, Cu, and Zn electrodes were better than the performances of other electrodes. However, these materials may not be used owing to the chemical changes that occur when the electrodes are in contact with the skin, such as discoloration and corrosion, which deteriorate their electrical characteristics. Titanium, stainless steel, and aluminum are chemically stable. The titanium electrode showed the best performance among the three, and it is our recommendation as a material for manufacturing reusable electrodes.

Bio-Medical Data Transmission System using Multi-level Visible Light based on Resistor Ladder Circuit (저항 사다리 회로 기반의 다중레벨 가시광을 이용하는 의료 데이터 전송 시스템)

  • An, Jinyoung;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.131-137
    • /
    • 2016
  • In this study, a multilevel visible light communication (VLC) system based on resistor ladder circuit is designed to transmit medical data. VLC technology is being considered as an alternative wireless communication due to various advantages such as ubiquity, license free operation, low energy consumption, and no radio frequency (RF) radiation characteristics. With VLC even in places where traditional RF communication (e.g., Wi-Fi) is forbidden, significant bio-medical signal including the electrocardiography (ECG) and photoplethysmography (PPG) data can be transmitted. More lives could be saved anywhere by this potential advantage of VLC with a fast emergency response time. A multilevel transmission scheme is adopted to improve the data capacity with keeping simplicity, where data transmission rate can increase by log2m times (m is the number of voltage levels) than that of conventional VLC transmission based on on/off keying. In order to generate multi-amplitudes, resistor ladder circuit, which is a basic principle of digital to analog convertor, is employed, and information is transferred through LED (Light-Emitting Diode) with different voltage level. In the receiver side, multilevel signal is detected by optical receiver including a photo diode. Then, the collected data are analyzed to serve the necessary medical care to the concerned patient.

The Unconstrained Sleep Monitoring System for Home Healthcare using Air Mattress and Digital Signal Processing (공기 매트리스와 디지털 신호처리를 이용한 홈헬스케어용 무구속 수면 모니터링 시스템)

  • Chee, Young-Joon;Park, Kwang-Suk
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.493-496
    • /
    • 2005
  • For home healthcare, the unconstrained measurement of physiological signal is highly required to avoid the inconvenience of users. The recording and analysis of the fundamental parameters during sleep like respiration and heart beat provide valuable information on his/her healthcare. Using the air mattress sensor system, the respiration and heart beat movements can be measured without any harness or sensor on the subject's body. The differential measurement technique between two air cells is adopted to enhance the sensitivity. The balancing tube between two air cells is used to increase the robustness against postural changes during the measurement period. The meaningful frequency range could be selected by the pneumatic filter with balancing tube. ECG (Electrocardiography) and respiration sensor (plethysmography) were measured for comparison with the signal from air mattress. To extract the heart beat information from air pressure sensor, digital signal processing technique was used. The accuracy for breathing interval and heart beat monitoring was acceptable. It shows the potentials of air mattress sensor system to be the unconstrained home sleep monitoring system.

  • PDF

Development of Tight-fitting Upper Clothing for Measuring ECG -A Focus on Weft Reduction Rate and Subjective Assessment- (심전도 측정을 위한 밀착 의복 연구 -패턴 축소 및 주관적 평가를 중심으로-)

  • Jeong, Yeonhee;Yang, YoungMo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.36 no.11
    • /
    • pp.1174-1185
    • /
    • 2012
  • This study develops tight-fitting upper clothing to measure electrocardiography (ECG) data. Taking into consideration the elasticity of the clothing, we made 4 experimental clothes by applying to each a weft reduction rate of 40%, 50%, 60%, and 70%. The 4 experimental clothes were used to measure resting ECG, exercise ECG, and post-exercise ECG for 4 men in their 20s. We compared clothing pressures using sensors on the human body and on a dressform. Subjective wear sensations of the 4 experimental clothes were evaluated using a subjective 7-point scale (with 7 being most excellent). We measured clothing pressures by using the air type pressure (AMI 3037-2) for upper and lower chest sensors in the developed tight-fitting upper clothing. The lower chest sensor showed that the clothing pressure on a human body and dressform changed consistently as the weft reduction rate decreased. The upper chest sensor showed inconsistent changes in clothing pressure as the weft reduction rate decreased. The wearing-test result for preliminary subjects showed that the lower chest sensor was more stable than the upper chest sensor; therefore, we inserted the sensor at the lower chest position before performing ECG. Except for Subject 4, the resting ECGs were stably measured for 3 subjects (Subject 1, Subject 2, and Subject 3) in all the developed clothes (A clothing, B clothing, C clothing, and D clothing). However, D clothing showed stable ECG values after exercise. The results of the experiment showed that we could measure ECG without difficulty using clothes with a weft reduction rate of 40% when the movement was not intense; however, tight-fitting upper clothing with a weft reduction rate of 70% was necessary to measure exercise ECG and post-exercise ECG values.

Development of Blood Pressure Estimation Methods Using The PPG and ECG Sensors (PPG 및 ECG 센서를 이용한 혈압추정 기법 개발)

  • Park, Hyun-Moon;Lee, Jung-Chul;Hwang, Tae-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1257-1264
    • /
    • 2019
  • The traditional cuff-based method for BP(Blood Pressure) measurement is not suitable for continuous real-time BP measurement techniques. For this reason, the previous studies estimated various blood pressures by fusion with the electrocardiography (ECG) and photoplethysmogram (PPG) sensor signals. However, conventional techniques based on PPG bio-sensing measurement face many challenging issues such as noisy supply fluctuation, small pulsation, and drifting non-pulsatile. This paper proposed a novel BP estimation methods using PPG and ECG sensors, which can be derived from the relationship between PPG and ECG using PTT(Pulse Transit Time) and PWV(Pulse Wave Velocity). Unlike conventional height ratio features, which are extracted on the basis of the peaks in the PPG and ECG waveform. The proposed method can be reliably obtained even if there are missing peaks among the sensed PPG signal. The increased reliability comes from periodical estimation of the peak-to-peak interval time using ECG and PPG. After 250,000 times trials of the blood pressure measurement, the proposed estimation technique was verified with the accuracy of ±28.5% error, compared to a commercialized BP device.

A Preliminary Study of Pulse Measurement Estimation Using Textile Proximity Sensor (섬유근접센서를 이용한 맥박 측정 평가의 기초연구)

  • Ho, JongGab;Wang, Changwon;Jung, HwaYoung;Na, Ye-Ji;Lee, Sangjoon;Min, Se Dong
    • Annual Conference of KIPS
    • /
    • 2016.04a
    • /
    • pp.865-867
    • /
    • 2016
  • 본 논문에서는 섬유근접센서를 이용하여 측정한 맥박을 평가하기 위해 Biopac MP150에서 획득한 Electrocardiography(ECG)와의 관계를 보았다. 섬유근접센서는 요골동맥에서의 맥박을 측정하기 위해 $5{\times}5$ 크기로 설계하였고, 전처리 과정과 필터링을 거쳐 획득한 데이터 값은 ECG 데이터와 Peak Point의 개수를 비교하여 올바른 맥박이 측정되었는지를 판단하였다. 그 결과 섬유근접센서와 MP150에서 측정한 두 데이터의 Peak Point가 모두 동일한 결과를 보였다.

Implementation of Biosignal Mornitoring System for u-Health (유헬스를 위한 생체신호 모니터링 시스템의 구현)

  • Kim, Kyung Ho;Park, Ji Ho;Park, Young Sik;Hwang, Yu Min;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.80-84
    • /
    • 2014
  • As an integrated technology with IT and biomedical sciences, U-health offers various healthcare services without time and space limit. In order to make a proper diagnosis, doctors need two key technologies: biosignal measurement and high reliability communication technologies. In this paper, we introduce an implementation process of a bio signal system with using an electrocardiography(ECG) sensor, video, global positioning system(GPS), communication module and micro controller unit(MCU).