• Title/Summary/Keyword: electro-optic sensing

Search Result 20, Processing Time 0.019 seconds

Optics for Satellite Remote Sensing Systems

  • Opt
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.53-58
    • /
    • 1995
  • Examples of advanced digital electro-optic imaging systems for the satellite remote sensing applications are introduced including multispectral focal plane assembly for newly proposed 1-m spatial resolution capability.

  • PDF

Photonic-Assisted Reactive-Near-Field Analysis of a 3 dB-Tapered Ka-Band Array Antenna

  • Lee, Dong-Joon;Kang, Jeong-Jin;Kang, No-Weon;Kim, Wan-Sik;Park, Wee-Sang;Rothwell, Edward J.;Whitaker, John F.
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.1
    • /
    • pp.18-24
    • /
    • 2010
  • A Ka-band microstrip array antenna for wide-range detection of moving targets is analyzed through a photonicassisted reactive-near-field characterization technique. The antenna array employs a 3-dB-tapered feed network to suppress the sidelobe level while retaining a wide azimuth beamwidth for a wide detection range. The relative nearelectric field patterns of the array and its 3-dB-tapered feed lines have been measured using an electro-optic fieldmapping technique for minimally invasive millimeter-wave sensing. A number of typical limitations on the technique, involving bandwidth, low signal-modulation depth, and high laser-induced noise in high-frequency applications, have been overcome by suppressing the carrier portion of the optical interrogation beam.

A Study on the Security of Infrastructure using fiber Optic Scattering Sensors (광섬유 산란형 센서를 이용한 사회기반시설물의 보안에 관한 연구)

  • Kwon, Il-Bum;Yoon, Dong-Jin;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.499-507
    • /
    • 2004
  • We have studied tile detection techniques, which can determine the location and the weight of an intruder into infrastructure, by using fiber-optic ROTDR (Rayleigh optical time domain reflectometry) sensor and fiber-optic BOTDA (Brillouin Optical time domain analysis) sensor, which can use an optical fiber longer than that of ROTDR sensor Fiber-optic sensing plates of ROTDR sensor, which arc buried in sand, were prepared to respond the intruder effects. The signal of ROTDR was analyzed to confirm the detection performance. The constructed ROTDR could be used up to 10km at the pulse width of 30ns. The location error was less than 2 m and the weight could be detected as 4 grades, such as 20kgf, 40kgf, 60kgf and 80kgf. Also, fiber optic BOTDA sensor was developed to be able to detect intrusion effect through an optical fiber of tells of kilometers longer than ROTDR sensor. fiber-optic BOTDA sensor was constructed with 1 laser diode and 2 electro-optic modulators. The intrusion detection experiment was peformed by the strain inducing set-up installed on an optical table to simulate all intrusion effect. In the result of this experiment, the intrusion effort was well detected as the distance resolution of 3m through the fiber length of about 4.81km during 1.5 seconds.

Compact mobile antenna and near field characterization for Communication Broadcasting Convergence (통방융합용 소형 모바일 안테나 및 근거리장 특성)

  • Kang, Jeong-Jin;Rothwell, Edward J.
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.5
    • /
    • pp.43-49
    • /
    • 2008
  • Motivated by the Communication Broadcasting Convergence service, various technical approaches are being used to develop more efficient antenna models. This paper proposes a compact mobile antenna which is attachable to a cell phone and is applicable for Communication Broadcasting Convergence. In the design of the antennas for mobile handsets, size reduction is a crucial factor. In this paper, the compactness of a loop antenna is realized by bending a folded-dipole. A short planar dipole is transformed to a twice folded dipole and a loop antenna to produce a larger input resistance. The current distribution of the antenna is the same as a loop antenna, and its radiation patterns are omni-directional. We also analyze the performance of the RFID antenna by exploring the current-induced near field radiation patterns using a electro-optic field mapping system.

  • PDF

Buried Fiber Optic Intrusion Sensor (매설형 광섬유 침입자 센서)

  • Park, Jae-Hee;Kim, Myung-Gyoo;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.6
    • /
    • pp.1-6
    • /
    • 1996
  • The feasibility of producing a practical buried fiber optic sensor with high sensitivity for detecting intruders is demonstrated. Experiments were carried out with the use of an all fiber Michelson interferometer, the sensing arm of which was buried in sand. When the sensing arm was buried 8 inches deep in sand, the pressure length product required for a half fringe shift in: the sensor output was $1.09\;kPa{\cdot}m$. The relation between the applied weight and the phase change was almost linear. Experimental results indicated that the sensitivity of the optical fiber sensor was sufficient to detect people on foot and vehicles passing over the buried fiber.

  • PDF

A new, hybrid, heterodyne, fiber-optic electric field sensor scheme and its applications (I/Q 변조 풀이 방식의 헤테로다인 간섭계를 이용한 미소 전기장 및 복굴절 측정)

  • 윤신영;조규만;이용산
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.161-164
    • /
    • 1997
  • A new hybrid, heterodyne, fiber-optic electric field sensor scheme is presented. In this scheme, a dual polarization, dual frequency, stabilized He-Ne laser is used for the light source of the interferometer, Probe beam is delivered to the sensor head using polarization maintaining fiber. In the sensor head, $LiTaO_3$ electro-optic crystal is used for sensing element. Phase retardation is induced on the dual frquency, dual polarization probe beam due to applied electric field across the crystal. Induced phase retardation is demodulated by in-phase and quadrature demodulation technique. In this way, we can obtain optimum sensitivity for electric field measurement regardless a quasi-static phase difference between two polarization components.

  • PDF

A wireless guided wave excitation technique based on laser and optoelectronics

  • Park, Hyun-Jun;Sohn, Hoon;Yun, Chung-Bang;Chung, Joseph;Kwon, Il-Bum
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.749-765
    • /
    • 2010
  • There are on-going efforts to utilize guided waves for structural damage detection. Active sensing devices such as lead zirconate titanate (PZT) have been widely used for guided wave generation and sensing. In addition, there has been increasing interest in adopting wireless sensing to structural health monitoring (SHM) applications. One of major challenges in wireless SHM is to secure power necessary to operate the wireless sensors. However, because active sensing devices demand relatively high electric power compared to conventional passive sensors such as accelerometers and strain gauges, existing battery technologies may not be suitable for long-term operation of the active sensing devices. To tackle this problem, a new wireless power transmission paradigm has been developed in this study. The proposed technique wirelessly transmits power necessary for PZT-based guided wave generation using laser and optoelectronic devices. First, a desired waveform is generated and the intensity of the laser source is modulated accordingly using an electro-optic modulator (EOM). Next, the modulated laser is wirelessly transmitted to a photodiode connected to a PZT. Then, the photodiode converts the transmitted light into an electric signal and excites the PZT to generate guided waves on the structure where the PZT is attached to. Finally, the corresponding response from the sensing PZT is measured. The feasibility of the proposed method for wireless guided wave generation has been experimentally demonstrated.

Fabrication and characterization of plastic fiber-optic radiation sensor tips using inorganic scintillator material (무기 섬광체를 이용한 플라스틱 광섬유 방사선 센서부 제작 및 특성평가)

  • Hwang, Young-Muk;Cho, Dong-Hyun;Lee, Bong-Soo;Cho, Hyo-Sung;Kim, Sin
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.244-249
    • /
    • 2005
  • In this study, radiation sensor tips are fabricated for remote sensing of X or gamma ray with inorganic scintillators and plastic optical fiber. The visible range of light from the inorganic scintillator that is generated by radiation source is guided by the plastic optical fiber and is measured by optical detector and power-meter. Two kinds of sensor tips are designed and fabricated such as film type and powder type. Many kinds of inorganic scintillators are used to fabricate both sensor tips, and the different wavelength of emitting lights from them are measured to determine the optimal inorganic scintillator which has maximum light output. As a radiation source X-ray generator and Ir-192 are selected to test a performance of sensor tip. It is expected that the fiber-optic radiation sensor is widely used in nuclear industry and medical applications due to its special characteristics such as good flexibility, easy in processing, long lengths and no interference to electro magnetic field.

Novel Intensity-Based Fiber Optic Vibration Sensor Using Mass-Spring Structure (질량-스프링 구조를 이용한 새로운 광세기 기반 광섬유 진동센서)

  • Yi, Hao;Kim, Hyeon-Ho;Choi, Sang-Jin;Pan, Jae-Kyung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.78-86
    • /
    • 2014
  • In this paper, a novel intensity-based fiber optic vibration sensor using a mass-spring structure, which consists of four serpentine flexure springs and a rectangular aperture within a proof mass, is proposed and its feasibility test is given by the simulation and experiment. An optical collimator is used to broaden the beam which is modulated by the displacement of the rectangular aperture within the proof mass. The proposed fiber optic vibration sensor has been analyzed and designed in terms of the optical and mechanical parts. A mechanical structure has been designed using theoretical analysis, mathematical modeling, and 3D FEM (Finite Element Method) simulation. The relative aperture displacement according to the base vibration is given using FEM simulation, while the output beam power according to the relative displacement is measured by experiment. The simulated sensor sensitivity of $15.731{\mu}W/G$ and detection range of ${\pm}6.087G$ are given. By using reference signal, the output signal with 0.75% relative error shows a good stability. The proposed vibration sensor structure has the advantages of a simple structure, low cost, and multi-point sensing characteristic. It also has the potential to be made by MEMS (Micro-Electro-Mechanical System) technology.

A Study of Slope Movements Using Fibre Optic Distributed Deformation Sensor (분포형 광섬유센서를 활용한 지표이동 측정에 관한 연구)

  • Chang, Ki-Tae
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.2
    • /
    • pp.75-80
    • /
    • 2005
  • Optical fibre sensors have shown a potential to serve real time health monitoring of Slope and structure. They can be easily embedded or attached to the structures and are not affected by the electro-magnetic field. Furthermore, they have the flexibility of the sensor size and very highly sensitive. In this study, we conducted several laboratory on slope and field tests using a novel optical sensor based on Brillouin scattering and PVC pipe. One of the advantages of this technique is that the bare fibre itself acts as sensing element without any special fibre processing or preparation. Test results have shown that BOTDR can be a great solution for sensor systems of Slope.

  • PDF