• Title/Summary/Keyword: electro-mechanical systems

Search Result 416, Processing Time 0.027 seconds

Detection and Quantification of Screw-Home Movement Using Nine-Axis Inertial Sensors

  • Jeon, Jeong Woo;Lee, Dong Yeop;Yu, Jae Ho;Kim, Jin Seop;Hong, Jiheon
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.6
    • /
    • pp.333-338
    • /
    • 2019
  • Purpose: Although previous studies on the screw-home movement (SHM) for autopsy specimen and walking of living persons conducted, the possibility of acquiring SHM based on inertial measurement units received little attention. This study aimed to investigate the possibility of measuring SHM for the non-weighted bearing using a micro-electro-mechanical system-based wearable motion capture system (MEMSS). Methods: MEMSS and camera-based motion analysis systems were used to obtain kinematic data of the knee joint. The knee joint moved from the flexion position to a fully extended position and then back to the start point. The coefficient of multiple correlation and the difference in the range of motion were used to assess the waveform similarity in the movement measured by two measurement systems. Results: The waveform similarity in the sagittal plane was excellent and the in the transverse plane was good. Significant differences were found in the sagittal plane between the two systems (p<0.05). However, there was no significant difference in the transverse plane between the two systems (p>0.05). Conclusion: The SHM during the passive motion without muscle contraction in the non-weighted bearing appeared in the entire range. We thought that the MEMSS could be easily applied to the acquisition of biomechanical data on the knee related to physical therapy.

Ultra-Drawing of Gel Films of Ultra High Molecular Weight Polyethylene/Low Molecular Weight Polymer Blends Containing $BaTiO_3$ Nanoparticles

  • Park Ho-Sik;Lee Jong-Hoon;Seo Soo-Jung;Lee Young-Kwan;Oh Yong-Soo;Jung Hyun-Chul;Nam Jae-Do
    • Macromolecular Research
    • /
    • v.14 no.4
    • /
    • pp.430-437
    • /
    • 2006
  • The ultra-drawing process of an ultra high molecular weight polyethylene (UHMWPE) gel film was examined by incorporating linear low-density polyethylene (LLDPE) and $BaTiO_3$ nanoparticles. The effects of LLDPE and the draw ratios on the morphological development and mechanical properties of the nanocomposite membrane systems were investigated. By incorporating $BaTiO_3$ nanoparticles in the UHMWPE/LLDPE blend systems, the ultra-drawing process provided a highly extended, fibril structure of UHMWPE chains to form highly porous, composite membranes with well-dispersed nanoparticles. The ultra-drawing process of UHMWPE/LLDPE dry-gel films desirably dispersed the highly loaded $BaTiO_3$ nanoparticles in the porous membrane, which could be used to form multi-layered structures for electronic applications in various embedded, printed circuit board (PCB) systems.

Fractal Analysis of GIS PD Patterns (GIS 부분방전 패턴의 프랙탈 해석)

  • Choi, Ho-Woong;Kim, Eun-Young;Min, Byoung-Woon;Lee, Dong-Chul;Kim, Hee-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07e
    • /
    • pp.55-56
    • /
    • 2006
  • In prevention and diagnostic system of GIS, pattern classification is focused on the detection of unnatural patterns in PD(Partial discharge) image data. Fractals have been used extensively to provide a description and to model mathematically many of the naturally occurring complex shapes, such as coastlines, mountain ranges, clouds, etc., and have also received increased attention in the field of image processing, for purposes of segmentation and recognition of regions and objects present in natural scenes. Among the numerous fractal features that could be defined and used for image data, fractal dimension and lacunarity have been found to be useful for recognition purposes Partial discharge(PD) occuring in GIS system is a very complex phenomenon, and more so are the shapes of the various 2-d patterns obtained during routine tests and measurements. It has been fairly well established that these pattern shapes and underlying defects causing PD have a 1:1 correspondence, and therefore methods to describe and qunatify these pattern shapes must be explored, before recognition systems based on them could be developed. The computed fractal features(fractal dimension and lacunarity) for standard library of PD data were analyzed and found to possess fairly reasonable pattern discriminating abilities. This new approach appears promising, and further research is essential before any long-term predictions can be made.

  • PDF

Fabrication and evaluation of a micro heat flux sensor using thermopile (열전대를 이용한 미세 열유속 센서의 제작 및 평가)

  • Kim Jung-Hoon;Kim Bum-Seok;Cho Hyung-Hee;Kim Yong-Jun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1210-1213
    • /
    • 2005
  • Micro heat flux sensor is used in various industries to measure heat flux. In this study, a micro heat flux sensor is fabricated using the MEMS (Micro Electro Mechanical Systems) techniques. The fabricated sensor is composed in thermopile for sensor and SU-8 for thermal resistance layer. The new method of fabrication SU-8 is proposed in this study. The sensitivity is $44\;\mu{V/(W/cm^2)}$ at steady state and Reynolds number is 91322.

  • PDF

A Novel Tensile Specimen and Tensile Tester for Mechanical Properties of Thin Films (박막의 기계적 물성을 위한 새로운 인장 시편 및 인장 시험기)

  • Park, Jun-Hyub;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.6 s.261
    • /
    • pp.644-650
    • /
    • 2007
  • Mechanical property evaluation of micrometer-sized structures is necessary to help design reliable microelectromechanical systems(MEMS) devices. Most material properties are known to exhibit dependence on specimen size and such properties of microscale structures are not well characterized. This paper describes techniques developed for tensile testing of thin film used in MEMS. Epi-polycrystalline silicon is currently the most widely used material, and its tensile strength has been measured as 1.52GPa. We have developed a tensile testing machine for testing microscale specimen using electro-magnetic actuator. The field magnet and the moving coil taken from an audio-speaker were utilized as the components of the actuator. Structure of specimen was designed and manufactured for easy handling and alignment. In addition to the static tensile tests, it is described that new techniques and procedures can be adopted for high cycle fatigue test of a thin film.

Nonlocal strain gradient-based vibration analysis of embedded curved porous piezoelectric nano-beams in thermal environment

  • Ebrahimi, Farzad;Daman, Mohsen;Jafari, Ali
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.709-728
    • /
    • 2017
  • This disquisition proposes a nonlocal strain gradient beam theory for thermo-mechanical dynamic characteristics of embedded smart shear deformable curved piezoelectric nanobeams made of porous electro-elastic functionally graded materials by using an analytical method. Electro-elastic properties of embedded curved porous FG nanobeam are assumed to be temperature-dependent and vary through the thickness direction of beam according to the power-law which is modified to approximate material properties for even distributions of porosities. It is perceived that during manufacturing of functionally graded materials (FGMs) porosities and micro-voids can be occurred inside the material. Since variation of pores along the thickness direction influences the mechanical and physical properties, so in this study thermo-mechanical vibration analysis of curve FG piezoelectric nanobeam by considering the effect of these imperfections is performed. Nonlocal strain gradient elasticity theory is utilized to consider the size effects in which the stress for not only the nonlocal stress field but also the strain gradients stress field. The governing equations and related boundary condition of embedded smart curved porous FG nanobeam subjected to thermal and electric field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is utilized to achieve the natural frequencies of porous FG curved piezoelectric nanobeam resting on Winkler and Pasternak foundation. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality parameter, electric voltage, coefficient of porosity, elastic foundation parameters, thermal effect, gradient index, strain gradient, elastic opening angle and slenderness ratio on the natural frequency of embedded curved FG porous piezoelectric nanobeam are successfully discussed. It is concluded that these parameters play important roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.

Estimation of Indent Fracture due to the Moving Process of a Pin on PCB Plate (PCB 판에 대한 핀의 이동 공정에 따른 압입파괴 평가)

  • Kim, Young-Choon;Kim, Choon-Sik;Lee, Hee-Sung;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.6967-6972
    • /
    • 2014
  • Assembly using a bolt and nut, and rivet or pin have been used widely for forming mechanical joints. The indent method is an easier process than other manufacturing techniques and the toughness of the material is excellent. On the other hand, there are many cases in which the cracks occur on the manufacturing process as the indent method. Therefore, two kinds of models, in which a pin goes into and out PCB plate in this study were developed using the CATIA program and finite element methods were performed using the ANSYS program. When a pin was passed through a PCB plate in cases 1 and 2, the maximum loads applied to the PCB plate were 79.708N and 90.277N, respectively. When the PCB plate came out of the pin in cases 1 and 2, the maximum loads were 63.783N and 33.75N, respectively. The damage prevention and durability can be improved by applying the study results to the design of real indentation.

Numerical Investigation of Temperature Uniformity and Estimation Accuracy for MEMS-based Black Body System (MEMS 기반 흑체 시스템의 온도 균일도 및 추정 정확도의 수치 해석적 검토)

  • Chae, Bong-Geon;Kim, Tae-Gyu;Lee, Jong-Kwang;Kang, Suk-joo;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.455-462
    • /
    • 2016
  • Output Characteristics of the spaceborn image sensor such as infrared(IR) sensor are varied according to time elapses and sensor repetition on/off operation. As a result, the quality of IR sensor image is decreased. Therefore, spaceborne image sensor require a periodic calibration using a black body system by correcting a non-uniformity of the sensor. In this paper, we proposed a MEMS-based black body system that can implement the high temperature uniformity at various standard temperatures ranging from low to high temperature and easily estimate the representative surface temperature. In addition, it has advantages lightweight, low-power and high accuracy. The feasibility of the proposed MEMS-based black body system was verified through the thermal analysis.

Start and Stop Characteristics of Single-Rod Electro-Hydrostatic Actuator (전동기 일체형 편로드 유압액추에이터의 기동 및 정지특성해석)

  • Jung, Gyu-Hong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1483-1490
    • /
    • 2011
  • Electro-hydrostatic actuators(EHAs), which are usually composed of a direct motor-driven hydraulic pump and a cylinder, have been widely adopted as aircraft actuation systems because of their benefits in terms of improved efficiency, weight savings and the fact that they use a standalone power source. Since the recent trend in construction vehicles has been focus on energy savings in their hydraulic systems, EHAs are expected to be potential substitutes for conventional power transmission, since they are capable of energy recovery as well as highly efficient pump control. In this paper, the start and stop characteristics of EHAs were investigated through cracking pressure analysis of the pilot-operated check valve(PCV), which enables the cylinder to standstill against an external load with no holding effort from the hydraulic pump. A mathematical model that includes the load dynamics and the EHA's internal hydraulic circuit was derived for simulation with the MATLAB Simulink package. This model verified the PCV's opening and closing sequence, which in turn affects the EHA's start and stop characteristics.

Adaptive Learning Control of Electro-Hydraulic Servo System Using Real-Time Evolving Neural Network Algorithm (실시간 진화 신경망 알고리즘을 이용한 전기.유압 서보 시스템의 적응 학습제어)

  • Jang, Seong-Uk;Lee, Jin-Geol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.584-588
    • /
    • 2002
  • The real-time characteristic of the adaptive leaning control algorithms is validated based on the applied results of the hydraulic servo system that has very strong a non-linearity. The evolutionary strategy automatically adjusts the search regions with natural competition among many individuals. The error that is generated from the dynamic system is applied to the mutation equation. Competitive individuals are reduced with automatic adjustments of the search region in accordance with the error. In this paper, the individual parents and offspring can be reduced in order to apply evolutionary algorithms in real-time. The feasibility of the newly proposed algorithm was demonstrated through the real-time test.