• Title/Summary/Keyword: electro-active dielectric elastomer

Search Result 7, Processing Time 0.016 seconds

Effects of Thickness, Elastomer Types and Thinner Content on Actuation Performance of Electro Active Dielectric Elastomers (탄성체의 두께, 종류 및 희석제 함유량이 전기활성 유전탄성체의 구동 성능에 미치는 영향)

  • Li, Bin;Lin, Zheng-Jie;Ryu, Sang-Ryeoul;Lee, Dong-Joo
    • Composites Research
    • /
    • v.27 no.1
    • /
    • pp.25-30
    • /
    • 2014
  • The actuation performance of an EADE (Electro-active dielectric elastomer) is studied as functions of thinner content, thickness and types of the dielectric elastomer such as natural (NR), acrylonitrile-butadiene (NBR), and silicon (KE-12) rubbers. With a decrease in elastomer thickness ($1{\rightarrow}0.5{\rightarrow}0.25{\rightarrow}0.1{\rightarrow}0.05$ mm) and an increase in thinner content ($0{\rightarrow}30{\rightarrow}50$ phr), the actuating displacement of KE-12 elastomer is increased, however their breakdown occurs at low voltage. For the same thickness (1 mm), the displacement of KE-12 elastomer shows a higher value (2.24 mm) compared to that of NR or NBR at the same applied voltage of 25 kV. The KE-12 has the lowest elastic modulus and the NBR has the highest one among the tested elastomers. However, the displacement of NBR elastomer is higher compared to that of NR because of high dielectric constant. It is found that the important factors of EADE actuator are a thickness, modulus and dielectric constant of the elastomer.

Electro-active Polymer and Dielectric Elastomer Technology for Haptic Interface, Muscular Enhancement, and Tunable Optical Components (전기가변 고분자 소재를 이용한 응용소자)

  • Yoon, J.W.;Park, S.K.;Mun, S.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.4
    • /
    • pp.108-116
    • /
    • 2019
  • Electro-active polymers and dielectric elastomers have many intriguing properties that enable smart interfaces and electrically tunable optical systems, such as haptic feedback devices, artificial muscles, and expansion-tunable optical elements. These device classes are of great interest owing to their promising roles in next-generation technologies including virtual or augmented reality, human sensing and muscular enhancement, and artificial skins. In this report, we review basic principles, current state-of-the-art techniques, and future prospects of electro-active and dielectric elastomer technology. We describe chemical and physical properties of the most promising polymer substances, essential elementary architectures for artificial muscle-like functionalities, and their applications to haptic interfaces, muscular enhancement, and focus-tunable optical elements.

A Review on Recent Development and Applications of Dielectric Elastomers

  • Seo, Jin Sung;Kim, Dohyeon;Hwang, Sosan;Shim, Sang Eun
    • Elastomers and Composites
    • /
    • v.56 no.2
    • /
    • pp.57-64
    • /
    • 2021
  • This paper reviews recent developments and applications of dielectric elastomers (DEs) and suggests various techniques to improve DE properties. DEs as smart materials are a variety of electro-active polymers (EAPs) that convert electrical energy into mechanical energy and cause a large deformation when a voltage is applied. The dielectric constant, modulus, and dielectric loss of DEs determine the efficiency of deformation. Among these, the dielectric constant significantly affects their performance. Therefore, various recent approaches to improve the dielectric constant are reviewed, including the enhancement of polarization, introduction of microporous structures in the matrix, and introduction of ferroelectric fillers. Furthermore, the basic principles of DEs are examined, as well as their various applications such as actuators, generators, sensors, and artificial muscles.

Design of an Actuator Using Electro-active Polymer (EAP) Actuator with Composite Electrodes (복합재료 전극을 가진 전기활성고분자 구동기의 설계)

  • Kim, Dong-Uk;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.211-215
    • /
    • 2019
  • The cell culture process under in vitro condition is much different from the actual human body environment. Therefore, in order to precisely simulate the human body environment, a dynamic cell culture device capable of delivering mechanical stimulation to cells is essential. However, conventional dynamic cell culture devices require relatively complicated devices such as tubes, pumps, and motors, and the mechanical stimuli delivered is also simple. In this study, an electro-active polymer actuator as a driving component is introduced to design simply driven dynamic cell culture device without complicated components. The device is capable of delivering relatively complex mechanical stimuli to the cells.

Biomimetic Actuator and Sensor for Robot Hand (로봇 손용 인체모방형 구동기 및 센서)

  • Kim, Baek-Chul;Chung, Jinah;Cho, Hanjoung;Shin, Seunghoon;Lee, Hyongsuk;Moon, Hyungpil;Choi, Hyouk Ryeol;Koo, Jachoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1497-1502
    • /
    • 2012
  • To manufacture a robot hand that essentially mimics the functions of a human hand, it is necessary to develop flexible actuators and sensors. In this study, we propose the design, manufacture, and performance verification of flexible actuators and sensors based on Electro Active Polymer (EAP). EAP is fabricated as a type of film, and it moves with changes in the voltage because of contraction and expansion in the polymer film. Furthermore, if a force is applied to an EAP film, its thickness and effective area change, and therefore, the capacitance also changes. By using this mechanism, we produce capacitive actuators and sensors. In this study, we propose an EAP-based capacitive sensor and evaluate its use as a robot hand sensor.

Wearable Tactile Display Based on Soft Actuator (유연한 구동기를 이용한 착용 가능한 촉각 제시 장치 개발)

  • Koo, Ig-Mo;Jung, Kwang-Mok;Park, Jong-Kil;Koo, Ja-Choon;Lee, Young-Kwan;Nam, Jae-Do;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.89-101
    • /
    • 2006
  • Tactile sensation is one of the most important sensory functions for human perception of objects. Recently, there have been many technical challenges in the field of tactile display as well as tactile sensing. In this paper, we propose an innovative tactile display device based on soft actuator technology with ElectroActive Polymer(EAP). This device offers advantageous features over existing devices with respect to intrinsic flexibility, softness, ease of fabrication and miniaturization, high power density, and cost effectiveness. In particular, it can be adapted to various geometric configurations because it possesses structural flexibility, so it can be worn on any part of the human body such as finger, palm, and arm etc. It can be extensively applied as a wearable tactile display, a Braille device for the visually disabled, and a human interface in the future. A new design of the flexible actuator is proposed and its basic operational principles are discussed. In addition, a wearable tactile display device with $4{\times}5$ actuator array(20 actuator cells) is developed and its effectiveness is confirmed.

  • PDF

Recent Advances in Electric Stimulus-Responsive Soft Actuators (전기자극 감응형 소프트 액추에이터의 최신 동향)

  • Seong-Jun Jo;Gwon Min Kim;Jaehwan Kim
    • Composites Research
    • /
    • v.37 no.4
    • /
    • pp.247-264
    • /
    • 2024
  • Recent advances in electro-active polymer (EAP) actuators, owing to their flexibility, lightweight, and simple fabrication process, have showcased their high utility across various fields such as soft robotics, biomimetics, wearable devices, and haptic technologies. Moreover, EAP actuators are evolving into smart devices with new functions and characteristics through the integration of functional materials and innovative technologies. This paper categorizes EAPs into ionic EAPs and electronic EAPs. Ionic EAPs include, most notably, ionic polymer-metal composites (IPMCs) and conducting polymers (CPs), while electronic EAPs encompass dielectric elastomer actuators (DEAs), ferroelectric polymer actuators, and the recently introduced hydraulically amplified self-healing electrostatic (HASEL) actuators. Detailed explanations based on the latest research are provided concerning the mechanism, structure, performance improvement strategies, methods for adding functionality, and application areas for each type of actuator.