• Title/Summary/Keyword: electro/mechanical impedance

Search Result 81, Processing Time 0.025 seconds

The Pitting Inhibition of Fe-Cu Alloy in Weakly Alkaline Solution under Wet-Dry Condition

  • Kim, Je-Kyoung;Kang, Tae-Young;Moon, Kyung-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.175-178
    • /
    • 2007
  • Pure iron, Fe-0.4, and 1.2 wt.%Cu alloys were examined by conducting the electrochemical techniques in the weakly alkaline solution, pH9, controlled by $Ca(OH)_2$, solution added with 0.02M NaCl. The $R_P$ measured from ac impedance, selected 10 kHz and 10mHz, in weakly alkaline solutions containing chloride ions indicated that the addition of copper up to 1.2wt.% into the pure iron significantly improved the pitting resistance of iron. In contrast to alloy, the pure iron showed the rapid pitting occurrences in drying period. During the drying period, the corrosion potential of pure iron was shifted to less noble value, pitting initiation.

Setting Characteristic Assessment of Cementitious Materials using Piezoelectric Sensor (압전소자를 이용한 시멘트계 재료의 응결 특성 평가)

  • Lee, Chang Joon;Lee, Jun Cheol;Shin, Sung Woo;Kim, Wha Jung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.5
    • /
    • pp.389-395
    • /
    • 2016
  • The evolution of electro-mechanical impedance (EMI) of the piezoelectricity (PZT) sensor was investigated to determine the setting times of cementitious materials in this study. The PZT sensor coated with non-conductive acrylic resin was embedded in cement paste before casting and the EMI signatures were continuously measured. Vicat needle test and semi-adiabatic calorimetry test were also conducted to justify the validity of EMI senssing technique in setting monitoring of cementitious materials. The results show that significant changes in EMI resonant peak magnitude and frequency during setting process were observed, and that the setting times determined by EMI sensing technique were relevant to the setting times measured by Vicat needle test and semi-adiabatic calorimetry test.

Damage Monitoring of PSC Girder Bridges based on Acceleration -Impedance Signals under Uncertain Temperature Conditions (불확실한 온도 조건하의 PSC 거더 교량의 가속도-임피던스기반 손상 모니터링)

  • Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.107-117
    • /
    • 2011
  • In this study, the effect of temperature-induced uncertainty to damage monitoring using acceleration-impedance response features is analyzed for presterssed concrete(PSC) girder bridges. Firstly, a damage monitoring algorithm using global and local vibration features is designed. As global and local features, acceleration and electro-mechanical impedance features are selected respectively. Secondly, the temperature effect on the acceleration and impedance features for a lab-scaled PSC girder is experimentally analyzed. From the experimental results, compensation models for temperature-acceleration features and temperature-impedance features are estimated. Finally, the feasibility of the acceleration-impedance-based damage monitoring technique using the compensation model is evaluated in the PSC girder for which a set of prestress-loss and flexural stiffness loss cases were dynamically tested.

Experimental Study of Characteristics of Three-Ring Impedance Meter and Dependence of Characteristics on Electric Conductivity of Fluids (3-ring 임피던스미터의 유체 전기 전도도 독립성에 대한 실험적 연구)

  • Kim, Jong-Rok;Ahn, Yeh-Chan;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.11
    • /
    • pp.1027-1033
    • /
    • 2010
  • A two-phase (gas-liquid) flow is a common phenomenon in fluidic systems, e.g., fluidic systems in the electro-magnetic or nuclear power generation industry and in the steel industry. The measurement of a two-phase flow is important for guaranteeing the safety of the system and for achieving the desired performance. The measurement of the void fraction, which is one of the parameters of the two-phase flow that determines the pressure drop and heat transfer coefficient, is very important. The time resolution achieved by employing the impedance method that can be used to calculate the void fraction from the impedance of the fluid is high because the electric characteristics are taken into account. Therefore, this method can be employed to accurately measure the void fraction without distortion of flow in real time by placing electrodes on the walls of the tubes. Coney analytically studied a ring-type impedance meter, which can be employed in a circular tube. The aim of this study is to experimentally verify the robustness of a three-ring impedance meter to variations in the electric conductivity of the fluid; this robustness was suggested by Coney but was not experimentally verified.

Application Technique to Piezoelectric Smart Structures of Statistical Energy Analysis (압전 지능 구조물의 통계적 에너지 해석 기법 적용에 관한 연구)

  • Kim Jung Ha;Kim Jae Hwan
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.415-420
    • /
    • 1999
  • 본 연구의 목적은 SEA모델링 기법을 이용하여 시스템 응답 특성을 예측 하는데 있어서 연견 손실 계수(coupling loss factor). 내부 손실 계수(internal loss factor)와 같은 주요 변수의 값을 압전 지능 구조물을 이용하여 도출 하는 .것이다. 관심 주파수 대역에서 임피던스(impedance) 해석기를 이용해 압전 지능 구조물의 임피던스를 측정하고 랜덤 가진 시 압전 지능 구조물의 부하전압을 측정, 시스템에 가해지는 전기적 파워를 구하였다. 이 값을 전기-기계적 연결 계수(electro-mechanical coupling coefficient)를 이용 기계적 파워로 상사 시키고 이때 시스템에 저장되는 에너지를 가속도계를 이용해 측정 하였다. 이 결과 값을 이용하여 연결 손실 계수와 내부 손실 계수를 구하여 보았다. 또한 이론식을 이용하여 얻은 이론 값과 기존의 가진기(shaker)를 이용하여 얻은 실험 값과 비교 분석 하였다.

  • PDF

Iron Core Design of 3-Phase 40MVA HTS Power Transformer Considering Voltages per Turn

  • Lee, Chan-joo;Seok, Bok-yeol
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.54-58
    • /
    • 2004
  • This paper presents the iron core design method of a high temperature superconducting (HTS) transformer considering voltages per turn (V/T). In this research, solenoid type HTS coils were selected for low voltage (LV) winding and double pancake coils for high voltage (HV) winding, just as in conventional large power transformers. V/T is one of the most fundamental elements used in designing transformers, as it decides the core cross sectional area and the number of primary and secondary winding turns. By controlling the V/T, the core dimension and core loss can be changed diversely. The leakage flux is another serious consideration in core design. The magnetic field perpendicular to the HTS wire causes its critical current to fall rapidly as the magnitude of the field increases slowly. Therefore in the design of iron core as well as superconducting windings, contemplation of leakage flux should be preceded. In this paper, the relationship between the V/T and core loss was observed and also, through computational calculations, the leakage magnetic fields perpendicular to the windings were found and their critical current decrement effects were considered in relation to the core design. The % impedance was calculated by way of the numerical method. Finally, various models were suggested.

Investigation of Setting Process of Cementitious Materials Using Electromechanical Impedance of Embedded Piezoelectric Patch

  • Lee, Chang Joon;Lee, Jun Cheol;Shin, Sung Woo;Kim, Wha Jung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.6
    • /
    • pp.607-614
    • /
    • 2012
  • In this study, the evolution of the electro-mechanical impedance (EMI) of a piezoelectric (PZT) patch embedded in fresh cement paste was investigated to discuss the possibility of monitoring the setting process of cement-based materials using an EMI sensing technique. A tailored thin square PZT patch was embedded in cement paste before casting, and EMI signatures of the embedded patch were continuously measured from casting up to 12 hours. A standard penetration resistance test was performed to compare and correlate the evolution of EMI during the setting process. The results showed that EMI responses differ according to the age of the cement paste, and that the behavior of the EMI resonance peak has a clear correlation with the penetration resistance of the cement paste. Based on the results, it is concluded that an EMI sensing technique using embedded PZT patch can be effectively applied to monitor the setting process of cement-based materials.

A new damage identification approach based on impedance-type measurements and 2D error statistics

  • Providakis, Costas;Tsistrakis, Stavros;Voutetaki, Maristella;Tsompanakis, Yiannis;Stavroulaki, Maria;Agadakos, John;Kampianakis, Eleftherios;Pentes, George
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.4
    • /
    • pp.319-338
    • /
    • 2015
  • The electro-mechanical impedance (EMI) technique makes use of surface-bonded lead zirconate titanate (PZT) patches as impedance transducers measuring impedance variations monitored on host structural components. The present experimental work further evaluate an alternative to the conventional EMI technique which performs measurements of the variations in the output voltage of PZT transducers rather than computing electromechanical impedance (or admittance) itself. This paper further evaluates a variant of the EMI approach presented in a previous work of the present authors, suitable, for low-cost concrete structures monitoring applications making use of a credit card-sized Raspberry Pi single board computer as core hardware unit. This monitoring approach is also deployed by introducing a new damage identification index based on the ratio between the area of the 2-D error ellipse of specific probability of EMI-based measurements containment over that of the 2-D error circle of equivalent probability. Experimental results of damages occurring in concrete cubic and beam specimens are investigated under increasing loading conditions. Results illustrate that the proposed technique is an efficient approach for identification and early detection of damage in concrete structures.

Dynamic Analysis of Linear Oscillatory Actuator for Stirling Refrigerator (스털링 냉동기용 리니어 왕복 액추에이터의 동특성 해석)

  • Jeong, S.S.;Yoon, I.K.;Jang, S.M.;Park, S.J.;Hong, Y.J.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.673-675
    • /
    • 2002
  • In this paper. the lumped electrical circuit approach of mass/spring system is used to model the mechanical aspects according to the frequency. Therefore, the mass/spring system can be dealt with here and linked with the equivalent circuit of electric linear oscillatory actuator(LOA). Analysis models are double-coil type linear compressor for stirling refrigerator. The compressor consists of the moving coil LOA, piston, and spring. The electro-mechanical system with mass and spring can be represented using the lumped electrical circuit. We present the system impedance and dynamics of moving coil linear compressor.

  • PDF

Electro-Mechanical Modeling and Performance Analysis of Floating Wave Energy Converters Utilizing Yo-Yo Vibrating System (요요 진동시스템을 이용한 가동물체형 파력 발전 시스템의 기계-전기 통합해석 모델링 및 성능 해석)

  • Sim, Kyuho;Park, Jisu;Jang, Seon-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.79-87
    • /
    • 2015
  • This paper proposes a floating-type wave energy conversion system that consists of a mechanical part (yo-yo vibrating system, motion rectifying system, and power transmission system) and electrical part (power generation system). The yo-yo vibrating system, which converts translational input to rotational motion, is modeled as a single degree-of-freedom system. It can amplify the wave input via the resonance phenomenon and enhance the energy conversion efficiency. The electromechanical model is established from impedance matching of the mechanical part to the electrical system. The performance was analyzed at various wave frequencies and damping ratios for a wave input acceleration of 0.14 g. The maximum output occurred at the resonance frequency and optimal load resistance, where the power conversion efficiency and electrical output power reached 48% and 290 W, respectively. Utilizing the resonance phenomenon was found to greatly enhance the performance of the wave energy converter, and there exists a maximum power point at the optimum load resistance.