• 제목/요약/키워드: electricity accumulation

검색결과 12건 처리시간 0.021초

전기화재 (ELECTRICAL FIRE)

  • 박헌식
    • 방재기술
    • /
    • 통권11호
    • /
    • pp.13-22
    • /
    • 1991
  • To understand electrical fire, the cause of it is classified into overcurrent, short circuit, leak, joint, overheat, accumulation of heat, spark, deterioration of insulation, static electricity, and lightning etc. and explained. And then by the precautions to it, proposed to the improvement of electric products, the completeness of safecty management and the use of alarm systems.

  • PDF

정전기 방지를 위한 기능성 펄프 트레이 개발 (Development of Functional Pulp Tray for Prevention of Static Electricity)

  • 이지영;김철환;남혜경;박형훈;권솔;이영민
    • 펄프종이기술
    • /
    • 제47권5호
    • /
    • pp.52-60
    • /
    • 2015
  • Static electricity is an imbalance of electric charges within or on the surface of a material. All packed items that are particularly sensitive to static discharge must be protected by antistatic treatment. Otherwise, static electricity generated by an electrical insulator may cause serious damages to some sensitive electronics. In order to remove or prevent a buildup of static electricity, packed items must be treated with the application of an antistatic agent, which helps any excess charge to be evenly distributed. Functional pulp tray used for packing of electronic goods was developed with application of an antistatic agent. As the concentration of the antistatic agent increased, charging voltage and surface resistance of molded pulps decreased. The increase of humidity in surrounding atmosphere around molded pulps led to the decrease of accumulation of static charges. In conclusion, the surface treatment of the antistatic agent not only reduced or eliminated buildup of static electricity in the surface, but also prevented generation of tiny dirts from molded tray.

유동대전에 의한 정전기 특성 분석 (Analysis of Characteristics on the Static Electricity by Streaming Electrification)

  • 김길태;이재근
    • 한국안전학회지
    • /
    • 제20권3호
    • /
    • pp.42-46
    • /
    • 2005
  • The static electricity by thinner flow and discharge energy is investigated experimentally for the purpose of preventing the electrostatic discharge and damage. Test system for evaluating streaming electrification consists of a teflon pipe, a reservoir tank a pump, flowmeters and an electrometer. When dielectric liquid flows through a pipe from one vessel to another, the potential difference generated in the collecting vessel is due to the accumulation of charges. These charges result from the convection of a part of the electrical double layer existing in the tube at the contact between the liquid and the inner wall. When the fluid velocity increases, the electric current increases proportionally. The charging current and accumulated charges by streaming electrification at the thinner velocity of 40cm/s are measured a range of 5 nA and $0.27{\mu}C$ respectively. This amount of static discharge energy generated by streaming electrification is enough to ignite flammable solvent. Therefore surface electric potential should decrease by using electrostatic shielding and ground.

전하 분리와 축적을 통한 물의 슬로싱 현상 기반 전기에너지 발생 장치 (Water-Sloshing-Based Electricity Generating Device via Charge Separation and Accumulation)

  • 차경환;허덕재;이상민
    • 한국전기전자재료학회논문지
    • /
    • 제35권1호
    • /
    • pp.98-101
    • /
    • 2022
  • Liquid-based Triboelectric nanogenerator (L-TENG) is one of the alternatives to solid-based Triboelectric nanogenerator (S-TENG) because of the absence of surface damage which can decrease the durability of the generator. However, the L-TENG also has an obvious drawback of significantly lower output than that of S-TENG. This article produces water-sloshing-based electricity generating device (W-ED) with a new design of L-TENG that improves electrical output in portable form. The dual-electrode system, consisting of closed-loop circuit and inner electrode which enables water to contact directly in the bottle, can generate the open-circuit voltage and the short-circuit current of up to 348 V and 5.1 mA, respectively. By investigating the motion of water for each frequency, we propose that W-ED is suitable device for a variety of human motions. We expect that W-ED can be applied in small electrical devices or sensors in daily-use items.

Influence of operation of thermal and fast reactors of the Beloyarsk NPP on the radioecological situation in the cooling pond: Part II, Macrophytes and fish

  • Aleksei Panov ;Alexander Trapeznikov;Vera Trapeznikova ;Alexander Korzhavin
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.707-716
    • /
    • 2023
  • The influence of waste technological waters of thermal and fast reactors of Beloyarsk NPP (Russia) on the accumulation of 60Co, 90Sr and 137Cs in macrophytes and ichthyofauna of the cooling pond has been studied. Critical radionuclides, routes of their entry into the ecosystem and periods of maximum discharge of radioisotopes into the cooling pond have been determined. It is shown that the technology of electricity generation at the Beloyarsk NPP, based on fast reactors, has a much smaller effect on the release of artificial radionuclides into the environment. Therefore, during the entire period of monitoring studies (1976-2019), the decrease in the specific activity of radionuclides of NPP origin in macrophytes was 13-25800 times, in ichthyofauna 1.5-44.5 times. The maximum discharge of artificial radionuclides into the Beloyarsk reservoir was noted during the period of restoration and decontamination work aimed at eliminating the emergencies at the AMB reactors of NPP. The factors influencing the accumulation of artificial radionuclides in the components of the freshwater ecosystem of the Beloyarsk cooling pond have been determined, including: the physicochemical nature of radioisotopes, their concentration in surface water, the temperature of the aquatic environment, the trophicity of the reservoir, the species of hydrobionts.

Removal of Cadmium from Clayey Soil by Electrokinetic Method

  • Niinae, Masakazu;Sugano, Tsuyoshi;Aoki, Kenji
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.91-96
    • /
    • 2001
  • Restoration of contaminated soils to an environmentally acceptable condition is important. One of the newer techniques in soil remediation is a method based on electrokinetic phenomena in soils. The technology uses electricity to affect chemical concentrations and water flow through the pores of soils. An important advantage of electrokinetic soil remediation over other in-situ processes such as soil flushing is the capability of control over the movement of the contaminants. Because the migration of the contaminants is confined by the electric field, there is little dispersion outside the treatment zone. Furthermore, the process is effective for soils with low and variable permeability. In the present study, the distributions of cadmium in the electrokinetic processing of kaolinite under the condition of constant applied voltage are investigated. Cadmium accumulates near the cathode without reducing the diffusion of hydroxide ion into the soil. In keeping the catholyte pH at neutrality, cadmium migrates toward the cathode without any accumulation of cadmium near the cathode and is successfully removed at the cathode reservoir. It was also found that the progress of electrokinetic processing of cadmium could be gasped to a certain extent by monitoring the local voltage and the current density.

  • PDF

Removal of Flooding in a PEM Fuel Cell at Cathode by Flexural Wave

  • Byun, Sun-Joon;Kwak, Dong-Kurl
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권2호
    • /
    • pp.104-114
    • /
    • 2019
  • Energy is an essential driving force for modern society. In particular, electricity has become the standard source of power for almost every aspect of life. Electric power runs lights, televisions, cell phones, laptops, etc. However, it has become apparent that the current methods of producing this most valuable commodity combustion of fossil fuels are of limited supply and has become detrimental for the Earth's environment. It is also self-evident, given the fact that these resources are non-renewable, that these sources of energy will eventually run out. One of the most promising alternatives to the burning of fossil fuel in the production of electric power is the proton exchange membrane (PEM) fuel cell. The PEM fuel cell is environmentally friendly and achieves much higher efficiencies than a combustion engine. Water management is an important issue of PEM fuel cell operation. Water is the product of the electrochemical reactions inside fuel cell. If liquid water accumulation becomes excessive in a fuel cell, water columns will clog the gas flow channel. This condition is referred to as flooding. A number of researchers have examined the water removal methods in order to improve the performance. In this paper, a new water removal method that investigates the use of vibro-acoustic methods is presented. Piezo-actuators are devices to generate the flexural wave and are attached at end of a cathode bipolar plate. The "flexural wave" is used to impart energy to resting droplets and thus cause movement of the droplets in the direction of the traveling wave.

Pulsed DC 마그네트론 스퍼터링으로 제조한 소다라임 유리의 고투과 및 대전방지 박막특성 연구 (A study on the high transparent and antistatic thin films on sodalime glass by reactive pulsed DC magnetron sputtering)

  • 정종국;임실묵
    • 한국표면공학회지
    • /
    • 제55권6호
    • /
    • pp.353-362
    • /
    • 2022
  • Recently, transmittance of photomasks for ultra-violet (UV) region is getting more important, as the light source wavelength of an exposure process is shortened due to the demand for technologies about high integration and miniaturization of devices. Meanwhile, such problems can occur as damages or the reduction of yield of photomask as electrostatic damage (ESD) occurs in the weak parts due to the accumulation of static electricity and the electric charge on chromium metal layers which are light shielding layers, caused by the repeated contacts and the peeling off between the photomask and the substrate during the exposure process. Accordingly, there have been studies to improve transmittance and antistatic performance through various functional coatings on the photomask surface. In the present study, we manufactured antireflection films of Nb2O5, | SiO2 structure and antistatic films of ITO designed on 100 × 100 × 3 mmt sodalime glass by DC magnetron sputtering system so that photomask can maintain high transmittance at I-line (365 nm). ITO thin film deposited using In/Sn (10 wt.%) on sodalime glass was optimized to be 10 nm-thick, 3.0 × 103 𝛺/☐ sheet resistance, and about 80% transmittance, which was relatively low transmittance because of the absorption properties of ITO thin film. High average transmittance of 91.45% was obtained from a double side antireflection and antistatic thin films structure of Nb2O5 64 nm | SiO2 41 nm | sodalime glass | ITO 10 nm | Nb2O5 64 nm | SiO2 41 nm.

제약회사 여과 공정중 스플래쉬 필링에 의한 화재사고 예방대책에 관한 연구 (A Study on Prevention of Fire Accidents by Splash Filling in the Filtration Process of Pharmaceutical Companies)

  • 김상길;이대준;양승복;임종국
    • 한국가스학회지
    • /
    • 제25권6호
    • /
    • pp.29-34
    • /
    • 2021
  • 제약회사에서 제조하는 의약품의 원재료에 인화성물질이 종종 존재한다. 이런 경우 과량의 인화성 물질을 투입하여 중간체를 만들고 반응에 참여하지 않은 인화성물질을 여과 및 건조단계를 통하여 제거하는 공정을 거치게 된다. 또한, 여과 공정에서 분리된 인화성 액체가 여액받이 통에 스플래쉬 필링 형태로 쌓이게 된다. 이런 경우 인화성 액체의 증기 및 미스트가 생성되어 폭발 하한 값, 최소점화에너지가 더욱 낮아지게 되며 복합 대전이 발생하여 화재·폭발의 위험이 증대된다. 본 연구에서는 최근의 제약회사 여과공정 중 발생한 화재 사고를 분석하여, 화재 폭발 사고를 방지하기 위한 방안으로 질소 공급설비 설치, 용량 개선, 도전성 여과포 및 정전기 축적 방지대책 등을 제시하고자 한다.

전력변환장치 캐비넷에서의 내부발열 개선을 위한 열유동 분석 및 유통안전성 향상을 위한 진동특성 분석 (Theoretical Heat Flow Analysis and Vibration Characteristics During Transportation of PCS(Power Conversion System) for Reliability)

  • 주민정;서상욱;오재영;정현모;박종민
    • 한국포장학회지
    • /
    • 제28권2호
    • /
    • pp.143-149
    • /
    • 2022
  • PCS needs to freely switch AC and DC to connect the battery, external AC loads and renewable energy in both directions for energy efficiency. Whenever converting happens, power loss inevitably occurs. Minimization of the power loss to save electricity and convert it for usage is a very critical function in PCS. PCS plays an important role in the ESS(Energy Storage System) but the importance of stabilizing semiconductors on PCB(Printed Circuit Board) should be empathized with a risk of failure such as a fire explosion. In this study, the temperature variation inside PCS was reviewed by cooling fan on top of PCS, and the vibration characteristics of PCS were analyzed during truck transportation for reliability of the product. In most cases, a cooling fan is mounted to control the inner temperature at the upper part of the PCS and components generating the heat placed on the internal aluminum cooling plate to apply the primary cooling and the secondary cooling system with inlet fans for the external air. Results of CFD showed slightly lack of circulating capacity but simulated temperatures were durable for components. The resonance points of PCS were various due to the complexity of components. Although they were less than 40 Hz which mostly occurs breakage, it was analyzed that the vibration displacement in the resonance frequency band was very insufficient. As a result of random-vibration simulation, the lower part was analyzed as the stress-concentrated point but no breakage was shown. The steel sheet could be stable for now, but for long-term domestic transportation, structural coupling may occur due to accumulation of fatigue strength. After the test completed, output voltage of the product had lost so that extra packaging such as bubble wrap should be considered.