• Title/Summary/Keyword: electrical stress

Search Result 2,029, Processing Time 0.029 seconds

Effect of Particle Characteristics and Temperature on Shear Yield Stress of Magnetorheological Fluid

  • Wu, Xiangfan;Xiao, Xingming;Tian, Zuzhi;Chen, Fei;Jian, Wang
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.244-248
    • /
    • 2016
  • Aiming to improve the shear yield stress of magnetorheological fluid, magnetorheological fluids with different particle characteristics are prepared, and the influence rules of particle mass fraction, particle size, nanoparticles content and application temperature on shear yield stress are investigated. Experimental results indicate that shear yield stress increases approximate linearly with the enhancement of particle mass fraction. Particle size and the nanoparticles within 10% mass fraction can improve the shear yield stress effectively. When the application temperature is higher than $100^{\circ}C$, the shear yield stress decreases rapidly because of thermal expansion and thermal magnetization effect.

Dependence of needle tip Curvature of the Inception Stress and Propagation of electrical tree (침전극의 곡율반경에 따른 트리개시전계 및 트리진전 특성)

  • 박영국;김완수;이홍규;이용희;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.59-62
    • /
    • 1999
  • Inception and propagation of electrical tree and properties of Partial discharge(PD) pulses accompanying with tree as a function of needle tip radius in low density polyethylene were discussed. To study on these characteristics in different tip radius, we used specimens with needle-plane electrode system made of LDPE, observed inception and propagation of electrical tree by optical microscope with computer and investigated the characteristics of the phase resolved PD pulses accompanying with propagation of electrical tree. The PD quantities detected and analysed were PD magnitude, mean phase angle, average discharge, and the statistical characteristics of the PD pulses. As the tip radius ${\gamma}$ increases, tree inception stress E$\sub$i/ converges to constance value. This result suggests that tree inception stress E$\sub$i/ increases due to stress relaxation when the tip radius is small. Branch-type electrical tree was formed When E$\sub$i/ is 640-750[kV/mm]. bush-type electrical tree when E$\sub$i/ is 370∼400[kV/mm], branch-like electrical tree when E$\sub$i/ is 370-400[kV/mm].

  • PDF

Experimental Relationship between Electrical Impedance of a Steel Wire and Applied Stress, Temperature, and Excited Frequency (강선의 전기적 임피던스와 응력, 온도 및 주파수 사이의 실험적 관계)

  • Nguyen, Duy-Hung;Kim, Byeong Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.183-189
    • /
    • 2020
  • This paper presents an experimental investigation regarding the sensitivity of electrical impedance of a steel wire to tensile stress, ambient temperature and induced frequency. For various stress levels and temperatures, the electrical impedance of a steel wire has been measured on a self-sensing system. The three experimental cases are carried out at various temperature conditions, stress levels and applied frequencies. If the temperature increases and stress level decreases at a given frequency, the electrical impedance on the steel wire increases. The results show that the correlation between electrical impedance and temperature is a linear relationship at all stress levels. It is noted that the sensitivity of impedance to temperature is much higher than the stress.

Mechanical and electrical properties of insulating materials at cryogenic temperature (극저온에서의 절연재료의 기계적.전기적 성질)

  • 김상현;마대영;김현희;정순용;김영석
    • Electrical & Electronic Materials
    • /
    • v.9 no.10
    • /
    • pp.1033-1039
    • /
    • 1996
  • Electrical and mechanical properties of polymer sheet at cryogenic temperature have been investigated. Tensile stress(and strain at break) in liquid nitrogen(77K) of 79.7MPa(l.2%) and 117.4MPa(2.05%) are evaluated for films of Polypropylene (PP) and Kapton, respectively. Dielectric loss tangent(tan .delta.) of PP and Kapton films is almost independent of the frequency and tensile stress. Also, field strength of PP film at 77K decreases with increasing the tensile stress.

  • PDF

Optimal Design of an IPMSM for High-Speed Operation Using Electromagnetic and Stress Analysis

  • Seo, Jang-Ho;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.377-381
    • /
    • 2009
  • In the development of an interior permanent magnet synchronous machine (IPMSM) for high-speed operation, the problem of mechanical stress of the rotor by centrifugal force becomes more essential as the speed and size of the machines increase. In this paper, the optimal design process combined with mechanical stress analysis was presented. In the analysis of mechanical stress, the node and element data obtained by the electromagnetic field analysis program are also used in the stress analysis. Therefore, the different pre-processing for the stress analysis program is no longer required. Therefore, the computing time of the new method is very short compared with the conventional approach, and when repeated analyzes of various models are required, this method is very useful. The validity of our methods was verified by comparing simulation results with conventional and experimental data.

The Fracture Distribution in ITO Coating with Compressive Bending Stress on Polymer Substrates

  • Lee, Sang-Keuk;Lee, Joon-Ung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.6
    • /
    • pp.5-8
    • /
    • 2003
  • In this paper, we investigated the fracture distribution in indium-tin-oxide (ITO) coating with compressive bending stress on polymer. Under compressive strain, the ITO island delaminates, buckles and cracks. As the mechanical compressive stress increases, the buckling width of ITO seems to be increased. These created cracks are related to well-defined distribution of mechanical stress in ITO island-arrays. We related. mechanical bending stress to crack distribution and derived theoretical equation of position-dependent bending stress. And, we verified the bending stress's magnitude to crack distribution observed from optical photographs.

Investigation of the thyristor failure mechanism induced by stress (Thyristor 소자의 스트레스에 따른 소자파괴 메커니즘 연구)

  • Kim, Hyoung-Woo;Seo, Kil-Soo;Kim, Sang-Cheol;Kang, In-Ho;Kim, Nam-Kyun;Kim, Ein-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.129-130
    • /
    • 2005
  • The electrical stress has a major effect on the long-term reliability of the thyristor. Therefore, it is needed to analyze the relationship between reliability and stress. In this paper, we investigate the device failure mechanism which induced by the stress. And also investigate the effect of the thermal stress on the device failure and relationship between electrical and thermal stress. Two-dimensional process simulator ATHENA and device simulator ATLAS are used to analyze the failure mechanism of the device.

  • PDF

Measurement of residual stress of TEOS and PSG for MEMS (MEMS용 PSG와 TEOS의 열처리에 따른 잔류응력의 측정)

  • Yi, Sang-Woo;Lee, Sang-Woo;Kim, Jong-Pal;Park, Sang-Jun;Lee, Sang-Chul;Kim, Sung-Un;Cho, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2536-2538
    • /
    • 1998
  • This paper investigates the residual stress of tetraethoxysilane (TEOS) and 7wt% phosphosilicate glass (PSG), which are commonly used as a sacrificial layer or etch mask in the fabrication of microelectromechanical systems (MEMS). In order to measure residual stress, $2{\mu}m$ thick TEOS and PSG stress measurement structures are fabricated. Polysilicon is used as the sacrificial layer. First the residual stress of an as-deposited 7wt% PSG flim and TEOS film are measured to be-0.3115% and -0.435%, respectively, which are quite large. These films are annealed from $500^{\circ}C$ to $800^{\circ}C$. Annealing has the effects of reducing residual stress. In the case of the 7wt% PSG film, the residual stress becomes +0.00715% after annealing at $625^{\circ}C$ for 150 minutes. In the case of TEOS film, the residual stress reduces to -0.2134% after same condition. Incidentally, this condition is the same condition for depositing a $2{\mu}m$ thick polysilicon at $625^{\circ}C$ at our low pressure chemical vapor deposition (LPCVD) furnace.

  • PDF

ZCS-PWM Converter dropped Voltage Stress of Free-Wheeling Diode (환류 다이오드의 전압스트레스가 강하된 ZCS-PWM Converter)

  • Kim Myung-O;Kim Young-Seok;Lee Gun-Haeng
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1187-1189
    • /
    • 2004
  • This paper presents a boost circuit topology driving in high - frequency. It solves the problem which arised from hard-switching in high-frequency using a period of resonant circuit and operating under the principle of ZCS turn-on and ZCZVS turn-off commutation schemes. In the existing circuit, it has the high voltage stress in free-wheeling diode. But in the proposed circuit, it has voltage stress which is lower than voltage stress of existing circuit with modifing a location of free-wheeling diode. In this paper, it explained the circuit operation of each mode and the waveform of each mode. Also the experiment result compares the existing voltage stress of free-wheeling diode with the proposed voltage stress of that.

  • PDF

Analysis of ITO on Polymer Substrate by External Bending Force

  • Han, Jin-Woo;Kim, Young-Hwan;Kim, Jong-Hwan;Hwang, Jeoung-Yeon;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.4
    • /
    • pp.149-153
    • /
    • 2005
  • In this paper, we investigated the island density-dependent stress distribution of indium-tin-oxide (ITO) film on polycarbonate substrate by external bending force. We used e-beam and RF­sputter for SiON, ITO sputtering. It was found that there are influence of island density on the substrate and decreasing crack density as goes to the minimum density. From the result that crack density was increasing at maximum island density, it is evident that more stress is imposed on same island position as island density.