• Title/Summary/Keyword: electrical steels

Search Result 70, Processing Time 0.029 seconds

Strain energy-based fatigue life prediction under variable amplitude loadings

  • Zhu, Shun-Peng;Yue, Peng;Correia, Jose;Blason, Sergio;De Jesus, Abilio;Wang, Qingyuan
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.151-160
    • /
    • 2018
  • With the aim to evaluate the fatigue damage accumulation and predict the residual life of engineering components under variable amplitude loadings, this paper proposed a new strain energy-based damage accumulation model by considering both effects of mean stress and load interaction on fatigue life in a low cycle fatigue (LCF) regime. Moreover, an integrated procedure is elaborated for facilitating its application based on S-N curve and loading conditions. Eight experimental datasets of aluminum alloys and steels are utilized for model validation and comparison. Through comparing experimental results with model predictions by the proposed, Miner's rule, damaged stress model (DSM) and damaged energy model (DEM), results show that the proposed one provides more accurate predictions than others, which can be extended for further application under multi-level stress loadings.

Coating Performance of SiO2 / Epoxy Composites as a Corrosion Protector

  • Rzaij, Dina R.;Ahmed, Nagham Y.;Alhaboubi, Naseer
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.111-120
    • /
    • 2022
  • To solve the corrosion problem of industrial equipment and other constructions containing metals, corrosion protection can be performed by using coating which provides a barrier between the metal and its environment. Coatings play a significant role in protecting irons and steels in harsh marine and acid environments. This study was conducted to identify an anti-corrosive epoxy coating for carbon steel composite with 0.1, 0.3, and 0.5 wt% concentrations of nanoparticles of SiO2 using the dip-coating method. The electrochemical behavior was analyzed with open circuit potential (OCP) technics and polarization curves (Tafle) in 3.5 wt% NaCl and 5 vol% H2SO4 media. The structure, composition, and morphology were characterized using different analytical techniques such as X-ray Diffraction (XRD), Fourier Transform Infrared spectrum (FT-IR), and Scanning Electron Microscopy (SEM). Results revealed that epoxynano SiO2 coating demonstrated a lower corrosion rate of 2.51 × 10-4 mm/year and the efficiency of corrosion protection was as high as 99.77%. The electrochemical measurement showed that the nano-SiO2 / epoxy coating enhanced the anti-corrosive performance in both NaCl and H2SO4 media.

Developing a fault diagnosis algorithm on a high current cable of arc furnace (전기로 High Current Cable 고장진단 알고리즘 개발)

  • Choi, Seong-Jin;Jang, Yu-Jin;Kim, Sang Woo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.573-575
    • /
    • 2005
  • In the steel industry, a steel melting electric arc furnace is used to produce both carbon and alloy steels. Steel scrap which is charged into the furnace is heated by means of electric arc between graphite electrodes and the scrap. In this melting process, current is supplied to the furnace through HCC(high current cable) which connect the furnace and transformer. Four HCCs are assigned to each phase in our system to divide the current. Since a sudden cable breaking result in the shutdown of melting process, an aging detection of HCC is very important for both an improvement of productivity and cost reduction. In this paper, the aging of the HCC is estimated by using the current ratio between four HCCs.

  • PDF

Level Set based Optimization of Electromagnetic System using Multi-Material (Level Set Method를 이용한 전자기 시스템의 다물질 최적설계)

  • Lee, Jang-Won;Shim, Ho-Kyung;Lee, Heon;Wang, Se-Myung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.653-654
    • /
    • 2008
  • This paper presents a topological shape optimization for electromagnetic system using a level set method. The optimization is progressed by updating the implicit level set function from the Hamilton-Jacobi equation. The up-wind scheme is used for numerical implementation of the Hamilton-Jacobi equation. In order to validate the proposed optimization, the core part of a C-core actuator is optimized by three cases using different materials; (single steel), (two steels), and (steel and magnet).

  • PDF

Topological Shape Optimization of Multi-Domain for Electromagnetic Systems using Level Set Method (전자기 시스템의 다물질 형상 최적설계를 위한 Level Set 방법 적용)

  • Lee, Jang-Won;Shim, Ho-Kyung;Wang, Se-Myung
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.23-25
    • /
    • 2008
  • This paper presents a topological shape optimization for electromagnetic system using a Level Set method. The optimization is progressed by updating the implicit Level Set function from the Hamilton-Jacobi equation. The up-wind scheme is used for numerical implementation of the Hamilton-Jacobi equation. In order to validate the proposed optimization, the core part of a C-core actuator is optimized by three cases using different materials; (single steel), (two steels), and (steel and magnet).

  • PDF

A Study on the Cylindrical Grinding Technology by Electrolytic In-Process Dressing(ELID) Method (전해인프로세스드레싱법에 의한 초정밀 원통 연삭기술 연구)

  • Je, Tae-Jin;Lee, Eung-Suk
    • 연구논문집
    • /
    • s.28
    • /
    • pp.59-71
    • /
    • 1998
  • The ELID(electrolytic in-process dressing) grinding method is a new precision grinding technique with the special electrolytic in-process dressing by metal bonded grinding wheel, fluid, and power supply. It is possible to make a efficient precision machining of hard and brittle materials such as ceramics, hard metals, and quenched steels by using this method, In this study, a new efficient precision grinding method with ELID was attempted for application to the machining and finishing processes of cylindrical structural components. And, we try to develop the cylindrical grinding technique for mirror surface of ceramics, tungsten carbide and SCM steel, and for the high efficiency grinding of machined parts, for example, ball screw shaft. Electrical characteristics of three different wheel grit sizes of #325, #2000 and #4000 were investigated experimentally. ELID grinding method is proved to be useful for mirror surface generation and efficient machining.

  • PDF

Thermal Diffusion behavior of Al-Si Deposited Electrical Steels (Al-Si 합금 증착 전기강판의 열확산 거동)

  • Kim, C.W.;Cho, K.H.;Suk, H.G.
    • Journal of Surface Science and Engineering
    • /
    • v.40 no.5
    • /
    • pp.214-218
    • /
    • 2007
  • The objective of this study is to evaluate the diffusion behavior of Al and Si from a coatings in the microstucture of Fe-Si steel. Steel samples deposited with Al-Si alloy are prepared by ion plating process, followed by annealing treatments for diffusion at $1050^{\circ}C$. Several intermetallic phases are found in the coatings and they are identified as Fe-Al and an orderd Fe-Si compounds. Series of different concentration profiles through the sample have been obtained and Si content reaches about 5 wt% in case of 90 minutes of diffusion time.

Optimization of Process Parameters for EDM using Taguchi Design (Taguchi법에 의한 방전가공의 공정변수 최적화)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.78-83
    • /
    • 2015
  • The method of electrical discharge machining (EDM), one of the processing methods based on non-traditional manufacturing procedures, is gaining increased popularity, since it does not require cutting tools and allows machining involving hard, brittle, thin and complex geometry. Modern ED machinery is capable of machining geometrically complex or hard material components, that are precise and difficult-to-machine such as heat treated tool steels, composites, super alloys, ceramics, etc. This paper reports the results of an experimental investigation by Taguchi method carried out to study the effects of machining parameters on material surface roughness in electric discharge machining of SM45C. The work material was ED machined with graphite and copper electrodes by varying the pulsed current, voltage and pulse time. Investigations indicate that the surface roughness is strongly depend on pulsed current.

Influence of Graphite Epoxy Composite Material on the Electrochemical Galvanic Corrosion of Metals (금속재료의 전기화학적 갈바닉 부식에 미치는 GECM의 영향)

  • Yoo, Y.R.;Son, Y.I.;Shim, G.T.;Kwon, Y.H.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.27-39
    • /
    • 2009
  • Non metallic composite materials, for example, GECM(graphite epoxy composite material) show high specific strength because of low density. These kinds of non metallic composite materials improved the structural effectiveness and operation economics. However, if these materials contacted several metals, corrosion can be arisen since non metallic composite materials have electrical conductivity. This paper dealt with galvanic corrosion between graphite epoxy composite material and several metals. Base on the electrochemical galvanic corrosion test between GECM and metals, corrosion current of carbon steel and aluminium increased with time but corrosion current of stainless steels and titanium decreased and galvanic potential increased. This behavior shows the galvanic corrosion depends upon the presence of passive film. Also, galvanic effect of GECM coupled with ferrous alloys and non-ferrous alloys was lower than that of 100% graphite, which is attributed to lower exposed area of graphite fiber in the GECM than apparent area of the GECM specimen used for the calculation of galvanic current in this work.

A Numerical Analysis of Eddy-Current Electromagnetic Field for the In-Process Measurement of Case Depth in Laser Surface Hardening Processes (레이저 표면경화공정에서 경화층깊이의 실시간 측정을 위한 와전류 전자기장의 이론적 해석)

  • 박영준;조형석;한유희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.529-539
    • /
    • 1994
  • In laser heat treatment process of steels, the thin layer of substrate is rapidly heated to the austenitizing temperature and subsequently cooled at a very fast rate due to the self-quenching effect. Consequently, it is transformed to martensitic structure which has low magnetic permeability. This observation facilitates the use of a sensor measuring the change of electromagnetic field induced by the hardening layer. In this paper, the eddy-current electromagnetic field is analyzed by a finite element method. The purpose of this analysis is to investigate how the electrical impedance of the sensor's sensing coil varies with the change in permeability. To achieve this, a numerical model is formulated, taking into consideration the hardening depth, distance of the sensor from the hardened surface and the frequency driving the sensor. The results obtained by numerical simulation show that the eddy-current measurement method can feasibly be used to measure the changing hardening depth within the frequency range from 10 kHz to 50 kHz.