• Title/Summary/Keyword: electrical resistance module

Search Result 118, Processing Time 0.028 seconds

Characteristics of polymer arrester with pressure relief structure (폴리머 피뢰기의 방압구조 및 특성)

  • Han, Dong-Hee;Cho, Han-Goo;Han, Se-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1109-1112
    • /
    • 2004
  • This study reports on the pressure relief design and braided composite of surge arrester. Surge arresters with porcelain housing must not have explosive breakage of the housing to minimize damage to other equipment when subjected to internal high short circuit current. As a solution, this study describes pressure relief design performance of arresters with braided composite module. In general, braided composite has Potential for improved impact and delamination resistance. Manufacturing processes of the braided composite could also be automated and could potentially lead to lower costs. Therefore, in consideration of characteristics of pressure relief for polymer arrester, the fabric pattern of braided composite was decided. And Polymer arrester module was manufactured with braid. The mechanisms of pressure occurrence and relief were investigated basically by analyzing arc energy and the correlation between thermal shock and indoor pressure in pressure relief test.

  • PDF

Electrical Output and Reliability of Photovoltaic Module Using Ethylene Tetrafluoroethylene Film (ETFE 필름을 적용한 태양광 모듈의 전기적 출력 및 신뢰성에 관한 연구)

  • Shin, Woogyun;Lim, Jongrok;Ko, Sukwhan;Kang, Gihwan;Ju, Youngchul;Hwang, Heymi
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.4
    • /
    • pp.13-22
    • /
    • 2020
  • As the supply of photovoltaic (PV) increases worldwide, the cumulative installations in 2018 were 7.9 and 560 GW in Korea and the world, respectively. Typically, when the ground on commercial PV modules is installed, the area is limited; hence, new designs of PV modules are required to install additional PVs. Among the new design of PV modules, lightweight PV modules can be utilized in PV systems, such as buildings, farmlands, and floating PV. Concerning the investigation of lightweight PV modules, several studies on materials for replacing low-iron tempered glass, which comprises approximately 65% of the PV module weight, have been conducted. However, materials that are used as substitutes for glass should possess similar lightweight properties and reliability as glass. In this study, experimental tests were performed to evaluate the applicability of ethylene tetrafluoroethylene (ETFE) film with excellent resistance to water and aging as a front material of PV modules. The transmittance and ultraviolet properties of the ETFE film were determined and compared with those of glass. A 1-cell module and laboratory-scale 24-cell module were manufactured using the ETFE film and glass, and the electrical output was measured and analyzed. Furthermore, damp heat and thermal cycle tests were conducted to evaluate the reliability of the ETFE film module. Based on the experimental results, the electrical output and reliability of the ETFE film module were similar to those of the glass module, and the ETFE film could be used as the front material of PV modules.

Analysis of Cell to Module Loss Factor for Shingled PV Module

  • Chowdhury, Sanchari;Cho, Eun-Chel;Cho, Younghyun;Kim, Youngkuk;Yi, Junsin
    • New & Renewable Energy
    • /
    • v.16 no.3
    • /
    • pp.1-12
    • /
    • 2020
  • Shingled technology is the latest cell interconnection technology developed in the photovoltaic (PV) industry due to its reduced resistance loss, low-cost, and innovative electrically conductive adhesive (ECA). There are several advantages associated with shingled technology to develop cell to module (CTM) such as the module area enlargement, low processing temperature, and interconnection; these advantages further improves the energy yield capacity. This review paper provides valuable insight into CTM loss when cells are interconnected by shingled technology to form modules. The fill factor (FF) had improved, further reducing electrical power loss compared to the conventional module interconnection technology. The commercial PV module technology was mainly focused on different performance parameters; the module maximum power point (Pmpp), and module efficiency. The module was then subjected to anti-reflection (AR) coating and encapsulant material to absorb infrared (IR) and ultraviolet (UV) light, which can increase the overall efficiency of the shingled module by up to 24.4%. Module fabrication by shingled interconnection technology uses EGaIn paste; this enables further increases in output power under standard test conditions. Previous research has demonstrated that a total module output power of approximately 400 Wp may be achieved using shingled technology and CTM loss may be reduced to 0.03%, alongside the low cost of fabrication.

Analysis of Photovoltaic module's Phenomena of aging with Acceleration Test (외부환경적 가속시혐에 의한 PV모듈의 열화성능 분석)

  • Kang, Gi-Hwan;Kim, Kyung-Soo;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Gun;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1151-1152
    • /
    • 2006
  • In this paper, we examined 10 domestic samples of three different model using thermal, humidity freeze, thermal-endurance and damp heat test under IEC61215 photovoltaic module environmental endurance test condition. Three was almost no changes on power generation. Insulation resistance capacity was much higher than judgement standard but, showed unstable results depending on environmental test items. On external appearance test, there were two models which showed bubble, humidity penetration, seal melted frame phenomenon. From this results, the degree of aging under the external environment is a main cause that shortens photovoltaic module life time. So it is considered that the efforts for finding optimum condition of manufacturing process should be needed.

  • PDF

Environmental Monitoring Sub-System for Ubiquitous Terminal Using Metal Oxide Nano-Material Gas Sensor (나노 금속산화물을 이용한 유단말용 환경 모니터링 서브 시스템)

  • Moon, S.E.;Lee, H.Y.;Lee, J.W.;Park, J.;Park, S.J.;Kwak, J.H.;Maeng, S.;Park, K.H;Kim, J.;Udrea, F.;Milne, W.I.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.63-63
    • /
    • 2008
  • Environmental monitoring sub-system has been developed using gas sensor module, Bluetooth module and PDA phone. The gas sensor module consists of $NO_2or$ CO gas sensor and signal processing chips. Gas sensor is composed of the micro-heater, sensing electrode and sensing material. Metal oxide nano-material was selectively deposited on a substrate with micro-heater and was integrated to the gas sensor module. The change in resistance of the metal oxide nano-material due to exposure of oxidizing or deoxidizing gases is utilized as the principle of this gas sensor operation mechanism. This variation detected in the gas sensor module was transferred to the PDA phone by way of Bluetooth module.

  • PDF

A Study on the Improvement of the Dye-sensitized Solar Cell by the Fiber Laser Transparent Conductive Electrode Scribing Technology (파이버 레이저 투명 전극 식각을 통한 염료감응형 태양전지 효율 상승 연구)

  • Son, Min-Kyu;Seo, Hyun-Woong;Shin, In-Young;Kim, Jin-Kyoung;Choi, Jin-Ho;Choi, Seok-Won;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2218-2224
    • /
    • 2010
  • Dye-sensitized solar cell (DSC) is a promising alternative solar cell to the conventional silicon solar cell due to several advantages. Development of large scale module is necessary to commercialize the DSC in the near future. A scribing technology of the transparent conductive oxide (TCO) is one of the important technologies on the fabrication of DSC module. A quality of the scribed line on the TCO has a decisive effect on the efficiency of DSC module. Among several scribing technologies, the fiber laser is a suitable for scribing the TCO more precisely and accurately because of their own characteristics. In this study, we try to improve the quality of the TCO scribed line by using the fiber laser. Consequently, the operating parameter of fiber laser is optimized to get the TCO scribed line with good quality. And the fiber laser scribing technology of the TCO is applied to the fabrication of the DSC with optimal operating parameter, operating current 3900mA. As a result, the current density and fill factor are improved and the total efficiency is increased because the internal resistances of DSC such as TCO sheet resistance and the resistance concerned to the electron movement in the $TiO_2$ are reduced. This is analyzed by the electrochemistry impedance spectroscopy (EIS) and the equivalent circuit model of the DSC.

Fabrication and Electrical Properties of Piezoelectric Inverter Module using Piezoelectric Transformer (압전변압기를 이용한 압전인버터 모듈 제작 및 전기적 특성)

  • Yoon, Jung-Rag;Lee, Chang-Bae;Woo, Byong-Chul
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.1
    • /
    • pp.39-43
    • /
    • 2009
  • In order to develop piezoelectric inverter module for CCFL driving, Rosen-type multilayer piezoelectric transformer was fabricated. The output power and efficiency of mutilayer piezoelectric transformer according to the variation inner electrode layer were investigated. Mutilayer piezoelectric transformer was fabricated conventional mutilayer ceramic method using PZT base ceramics. Also, piezoelectric inverter module was adopted driving circuit with half-bridge type. The piezoelectric inverter module was set up with input voltage 12.5 V, switching frequency 104.3 KHz. The results showed the value of step-up ratio 100, efficiency 87% at load resistance of $100k{\Omega}$.

  • PDF

Separation and Characterization of Crystalline Silicon Solar Cell by Laser Scribing (레이저 스크라이빙에 의한 결정질 실리콘 태양전지의 분할 및 특성 분석)

  • Park, Ji Su;Oh, Won Je;Lee, Soo Ho;Lee, Jae Hyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.187-191
    • /
    • 2019
  • Advances in laser technology have enabled ultra-high-speed ultra-precise processing, thus expanding potential applications to the semiconductor, medical, and photovoltaic industries. In particular, laser scribing technology has been applied to the production of shingled solar modules. In this work, we analyze the effect of laser scribing conditions, e.g., scribing depth, on the characteristics of the resulting divided solar cells. When the scribing depth was greater than $100{\mu}m$, the solar cells were well separated. In addition, the desired scribing depths were reached in fewer scans when the laser spot overlap was 100%. The efficiency of the divided cells decreased due to the high series resistance at scribing depths of less than $100{\mu}m$. However, at scribing depths of approximately $100{\mu}m$, the series resistance was low and efficiency reduction was minimized.

The Electrical Characteristics of Power FET using Super Junction for Advance Power Modules

  • Kang, Ey Goo
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.360-364
    • /
    • 2013
  • The maximum breakdown voltage's characteristic within the Super Junction MOSFET structure comes from N-Drift and P-Pillar's charge balance. By developing P-Pillar from Planar MOSFET, it was confirmed that the breakdown voltage is improved through charge balance, and by setting the gate voltage at 10V, the characteristic comparisons of Planar MOSFET and Super Junction MOSFET are shown in picture 6. The results show that it had the same breakdown voltage as Planar MOSFET which increased temperature resistance by 87.4% at $.019{\Omega}cm^2$ which shows that by the temperature resistance increasing, the power module's power dissipation improved.

An LTCC Inductor Embedding NiZn Ferrite and Its Application (NiZn 페라이트를 내장한 LTCC 인덕터 및 응용)

  • Won, Yu-June;Kim, Hee-Jun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.10
    • /
    • pp.534-539
    • /
    • 2006
  • An integrated inductor using the low-temperature co-fired ceramics(LTCC) technology for low-power electronics was fabricated. In the inductor NiZn ferrite sheet$({\mu}_r=230)$, was embedded to increase inductance. The inductor has Ag spiral coil with 14 turns$(7turns{\times}2layers)$, a dimension of 0.6mm in width, 10um in thickness, and 0.15mm pitch. To evaluate the inductance, including the parasitic resistance, the fabricated inductor was calculated and measured. It was confirmed that calculated values were very close to the measured values. Finally as an application of the LTCC integrated inductor to low power electronic circuits, a LTCC boost DC/DC converter with 1W output power and up to 0.5MHz switching frequency using the inductor fabricated was developed.