• 제목/요약/키워드: electrical resistance module

검색결과 118건 처리시간 0.028초

태양전지모듈에서 Interconnection용 SnPbAg paste가 전기적 특성에 미치는 영향 (The effect on electrical properties of SnPbAg paste for Interconnection in Photovoltaic Module)

  • 강기환;유권종;안형근;한득영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.71-74
    • /
    • 2003
  • In this paper, electrical properties of photovoltaic module have been observed for 5 years and found to drop around 5 to 25 %. Element technologies which are critical to electrical loss were therefore examined and dark I-V curve were observed with different soldering conditions. From the results, series resistance decreased with the decrease of contact resistance regardless of temperature conditions.

  • PDF

태양전지 모듈의 파라미터 추정에 관한 연구 (A Study on the Parameter Estimation of Solar Cell Module)

  • 김태엽;이윤규;안호균
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권2호
    • /
    • pp.92-98
    • /
    • 2002
  • It is necessary to measure the solar cell parameter fur understanding characteristic of solar cell and applying to many other fields. Since photovoltaic system consists of solar cell module, which are connected each other in series and parallel, it is not proper to apply a solar cell parameter to photovoltaic system. Therefore, to estimate the solar tell module and to solve the problem of the established algorithm is on demand. In this paper the authors have improved the accuracy of solar cell module Parameter estimation by compensating series and Parallel resistance, and developed a new parameter estimation algorithm, which can be applied to photovoltaic system without high cost measuring equipment. And the validity of proposed algorithm is verified by the simulation and experimentation.

LED Chip 열저항측정을 통한 LED Module 온도분석 (LED Module Temperature Analysis for LED Chip Thermal Resistance Measurement)

  • 정희석;유형열;김정수;이영주
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 춘계학술대회 논문집
    • /
    • pp.164-167
    • /
    • 2009
  • It is difficult to measure junction temperature in the LED Module. According to the arrangement control unit and heat sink, temperature distribution is changed in the LED Module. A method of forecasting LED Module thermal resistance is suggested with measuring LED and PCB board temperature.

  • PDF

Preparation of a Semi-Conductive Thin Film Sensor for Measuring Occlusal Force

  • Yu, Siwon;Kim, Nari;Lee, Youngjin
    • 센서학회지
    • /
    • 제24권2호
    • /
    • pp.88-92
    • /
    • 2015
  • In order to study the semi-conductive characteristics of carbon black-filled ethylene-propylene-diene monomer (EPDM) composite film, which is used for measuring occlusal force, composite samples with volume ratios of carbon black to EPDM ranging from 30% to 70% were prepared. The process of making a composite film consists of two steps, which involve the preparation of a slurry composition and the fabrication of a thin film using solution casting and a lamination process. To prepare the slurry composition, we dispersed carbon black nanoparticles into an organic solvent before mixing with an EPDM solution in toluene. The mechanical and electrical properties of the resulting carbon black-filled EPDM film were then investigated, and the results showed that the electrical resistance of a film decreases with the increase in the carbon black content. Furthermore, improved elastic recovery was observed after cross-linking the EPDM.

Matlab을 통한 PV 모듈의 I-V 출력 특성 시뮬레이션 (Simulation of I-V characteristics of a PV module in matlab)

  • 홍종경;정태희;류세환;원창섭;강기환;안형근;한득영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.71-72
    • /
    • 2008
  • This paper describes a circuit based simulation model for a Photovoltaic(PV) cell in order to estimate the electrical behavior of the solar cell module with changes of environmental parameters such as shunt resistance, series resistance, temperature and irradiance. An accurate I-V model of PV module is presented based on the Shockley diode model. The general model was implemented on Matlab scrip file, and used irradiance and temperature as variables and outputs of the I-V characteristic. A typical PV module was used for the evaluation, and results was compared with reference taken directly from the manufacturer's published curves leading to excellent agrement with the theoretical prediction.

  • PDF

태양전지 셀의 열화와 직렬저항의 변화에 따른 태양전지 모듈의 특성 해석 (The performance analysis of photovoltaic module accounting for solar cell degradation and series resistance)

  • 박지홍;강기환;화이티루 로렌스;안형근;유권종;한득영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.28-29
    • /
    • 2006
  • When photovoltaic module is used for a long time, its performance decreases due to several reasons. In this paper, we focus on the possibilities mainly contributing to the degraded efficiency of the polycrystalline silicon photovoltaic modules. The analysis is based on the modules that have been used for 15 years. These are two main reasons that cause the efficiency degradation, the corrosion and thermal decomposition. The former phenomenon of electrode is mainly due to the moisture from damaged back sheet in some module. However the other reason of the degraded efficiency comes from the thermal decomposition, which can not be observed from the outside but only by experiment. In this study, the comparison between the efficiency of normal modules and degradation modules is presented. Module having degraded cell was seen to cause increase of series resistance by about 80%, in comparison to normal samples efficiency which reduce by about 20%. This study shows that the effects of series resistances on module performance are critical. These effects must be understood and taken into consideration when analyzing performance degradation.

  • PDF

운전 온도에 따른 열전발전 모듈의 전기적 내부 저항 변화에 대한 연구 (Study on the Variation of Electrical Internal Resistance for Thermoelectric Generator Module with Operating Temperature)

  • 김윤호;김명기;김서영;리광훈;엄석기
    • 설비공학논문집
    • /
    • 제22권1호
    • /
    • pp.1-12
    • /
    • 2010
  • An analysis model considered the manufacturing factors and the pellet size has been developed in order to predict the performance characteristics of thermoelectric modules as generators. Since the electrical internal resistance has a significant role in the performance of thermoelectric modules, the variations of electrical internal resistance with operating temperature are experimentally measured. The modified electrical internal resistance calculated from an experimental correlation is applied to the analysis model. To verify the modified analysis model, the output voltage, output current and output power are compared with experimental results for the operating temperature conditions of $T_h=85^{\circ}C$ and ${\Delta}T=40^{\circ}C$. The modified analysis shows a good agreement with the experimental results in terms of the output voltage, current, and power.

태양 입사각에 따른 전력 변화 (Power Change According to the Angle of Solar Incidence)

  • 황미용;응우옌반흥;이순형;최용성
    • 한국전기전자재료학회논문지
    • /
    • 제36권3호
    • /
    • pp.261-265
    • /
    • 2023
  • In this paper, we analyzed the transformation of the power following by the angle of incidence of the solar, the angle of photovoltaic module and artificial solar changed from 30° to 90° and synchronously changed the distance from 0.1 m to 0.5 m. Setting the distance between the artificial solar and the luminometer from 0.1 m to 0.5 m and set the angles to 90°, 60°, 45°, and 30°, the angle was 90° and when the distance was 0.1 m, the maximum Illuminance was 19,580 lux, the light could be obtained more. If the angle of incidence between the Artificial solar and the photovoltaic module was 90° and the variable resistance was 1,000 Ω at a distance of 0.4 m, the maximum power reached 0.82 W. Provided that the angle of incidence between the artificial solar and the photovoltaic module was 90° and the distance was 0.2 m since the variable resistance had the maximum power of 500 Ω, the maximum power was 0.78 W. At 1,000 Ω, the maximum power is 0.80 W so the maximum power at the variable resistance 1,000 Ω could obtain higher power than the variable resistance 500 Ω. The variable resistance was 1,000 Ω and the angle of incidence between the Artificial solar and the photovoltaic module was 90° at a distance of 0.4 m, and the maximum power reached 0.82 W. The angle was 60° at 0.3 m and 0.4 m the maximum power reached 0.10 W. The angle was 45° at 0.2 m maximum power reached 0.020 W, the angle was 30° at 0.4 m, and the maximum power reached 0.004 W. In four results about maximum power depending on the angle of incidence between the artificial solar and the photovoltaic module, the luminous efficiency and maximum power can be got the best at an angle of 90°.

PV 모듈의 손실 저항 성분을 고려한 I-V 출력 모델링에 관한 연구 (Modelling of I-V Characteristics of PV module with resistance variation)

  • 홍종경;정태희;류세환;원창섭;강기환;안형근;한득영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.177-179
    • /
    • 2008
  • This paper, we proposed the theoretical model which includes series resistance $R_s$ and shunt resistance $R_{sh}$ of single-crystalline PV module and used numerical method based on physics. Series resistance $R_s$ was derived from approach for p-n junction diode instead of established form obtained from the simulator with irradiance changes. Electrical output characteristics for PV modules to count the effect of $R_s$ were then studied. Finally simulation results were compared to experimental data leading to good agreement.

  • PDF

음영효과를 고려한 a-Si PV모듈의 출력 변화 및 최적 설계조건에 관한 연구 (Analysis of Power Variation and Design Optimization of a-Si PV Modules Considering Shading Effect)

  • 신준오;정태희;김태범;강기환;안형근;한득영
    • 한국태양에너지학회 논문집
    • /
    • 제30권6호
    • /
    • pp.102-107
    • /
    • 2010
  • a-Si solar cell has relatively dominant drift current when compared with crystalline solar cell due to the high internal electric field. Such drift current make an impact on the PV module in the local shading. In this paper, the a-Si PV module output characteristics of shading effects was approached in terms of process condition, because of the different deposition layer of thin film lead to rising the resistance. We suggested design condition to ensure the long-term durability of the module with regard to the degradation factors such as hot spot by analyzing the module specification. The result shows a remarkable difference on module uniformity for each shading position. In addition, the unbalanced power loss due to power mismatch of each module could intensify the degradation.