• 제목/요약/키워드: electrical parameter estimation

검색결과 556건 처리시간 0.027초

Neural Network를 이용한 제어기 설계 (Design of Controller Utilizing Neural-Network)

  • 김대종;구영모;장석호;우광방
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.397-400
    • /
    • 1989
  • This study is to design a method of parameter estimation for a second order linear time invarient system of self-tuning controller utilizing the neural network theory proposed by Hopfield. The result is compared with the other methods which are commonly used in controller theories.

  • PDF

AR 매개 변수를 이용한 근육 피로의 측정 (Measurement of Muscle Fatigue using AR Parameters)

  • 김홍래;왕문성;최윤호;박상희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 하계종합학술대회 논문집
    • /
    • pp.158-161
    • /
    • 1989
  • This paper describes the AR model of EMG signal during maximum voluntary contraction. By comparing the AR coefficients and the reflection coefficients of the AR model with the median frequency of power spectrum, it if proved that muscle fatigue can be measured by the AR and the reflection coefficients. In the estimation procedure of AR model parameter, the auto-correlation method is superior to the covariance method, and it is determined that the optimal order is six. As the muscle becomes fatigue, the median frequency of power spectrum is declined, and the AR coefficient [$a_1$ ] and the reflection coefficient [$k_1$ ] are also decreased. Therefore the muscle fatigue can be measured by the AR parameter.

  • PDF

파라메터 추정과 슬라이딩 모드를 이용한 상태관측기 구성에 관한 연구 (A study on the sliding observer with Parameter estimation)

  • 박승규;김태원;박두환;안호균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2064-2066
    • /
    • 2003
  • In this paper, an observer with novel sliding mode is proposed. The sliding mode is designed by defining a extended state whose dynamic is determined from the output error. It has the advantage of giving the desired dynamics for the error system. To get the exact system parameter for an observer, the RLS algorithm is used.

  • PDF

Newton-Raphson법 기반의 적응 망각율을 갖는 RLS 알고리즘에 의한 원격센서시스템의 시변파라메타 추정 (Time Variant Parameter Estimation using RLS Algorithm with Adaptive Forgetting Factor Based on Newton-Raphson Method)

  • 김경엽;지석준;곽려혜;이준탁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1680-1681
    • /
    • 2007
  • This paper deals with RLS algorithm using Newton-Raphson method based adaptive forgetting factor for a passive telemetry RF sensor system in order to estimate the time variant parameter to be included in RF sensor model.

  • PDF

Estimation of pattern classification vigilance parameter using neural network

  • 손준혁;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.95-97
    • /
    • 2004
  • This paper estimates Adaptive Resonance Theory 1(ART1) as a vigilance parameter of pattern clustering algorithm. Inherent characteristics of the model are analyzed. In particular the vigilance parameter ${\rho}$ and its role in classification of patterns is examined. Our estimates show that the vigilance parameter as designed originally does not necessarily increase the number of categories with its value but can decrease also. This is against the claim of solving the stability-plasticity dilemma. However, we have proposed a modified vigilance parameter estimate criterion which takes into account the problem of subset and superset patterns and stably categorizes arbitrarily many input patterns in one list presentation when the vigilance parameter is closer to one.

  • PDF

3상 계통 연계형 인버터의 역상분 전류 주입을 이용한 계통 등가 임피던스 추정 기법 (Equivalent Grid Impedance Estimation Method Using Negative Sequence Current Injection in Three-Phase Grid-connected Inverter)

  • 박찬솔;송승호;임지훈
    • 전력전자학회논문지
    • /
    • 제20권6호
    • /
    • pp.526-533
    • /
    • 2015
  • A new algorithm is proposed for the estimation of equivalent grid impedance at the point of common coupling of a grid-tie inverter output. The estimated impedance parameter can be used for the improvement of the performance and the stability of the distributed generation system. The estimation error is inevitable in the conventional estimation method because of the axis rotation due to PLL. In the conventional estimation error, the d-q voltage and current are used for the calculation of the impedance with active and reactive current injections. Conversely, in the proposed algorithm, the negative sequence current is injected, and then the negative sequence voltage is measured for the impedance estimation. As the positive and negative sequence current controller is independent and the PLL is based on the positive sequence component only, the estimation of the equivalent impedance can be achieved with high accuracy. Simulation and experimental results are compared to validate the proposed algorithm.

Study on Advanced Frequency Estimation Technique using Gain Compensation

  • Park, Chul-Won;Shin, Dong-Kwang;Kim, Chul-Hwan;Kim, Hak-Man;Kim, Yoon-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권4호
    • /
    • pp.439-446
    • /
    • 2011
  • Frequency is an important operating parameter for the protection, control, and stability of a power system. Thus, it must be maintained very close to its nominal frequency. Due to the sudden change in generation and loads or faults in a power system, however, frequency deviates from its nominal value. An accurate monitoring of the power frequency is essential for optimum operation and prevention of wide area blackout. Most conventional frequency estimation schemes are based on the DFT filter. In these schemes, the gain error could cause defects when the frequency deviates from the nominal value. We present an advanced frequency estimation technique using gain compensation to enhance the DFT filter-based technique. The proposed technique can reduce the gain error caused when the frequency deviates from the nominal value. Simulation studies are performed using both the data from EMTP-RV software and the user-defined arbitrary signals to demonstrate the effectiveness of the proposed algorithm. Results show that the proposed algorithm achieves good performance under both steady state tests and dynamic conditions.

전류적산법과 OCV 방법을 결합한 Li-Ion 배터리의 충전상태 추정 (State of Charge Estimation of Li-Ion Battery Based on CIM and OCV Using Extended Kalman Filter)

  • 박정호;차왕철;조욱래;김재철
    • 조명전기설비학회논문지
    • /
    • 제28권11호
    • /
    • pp.77-83
    • /
    • 2014
  • The Estimation of State of Charge(SOC) for batteries is an important aspect of a Battery Management System(BMS). A method for estimating the SOC is proposed in order to overcome the individual disadvantages of the current integral and Open Circuit Voltage(OCV) estimation methods by combining them using Extended Kalman filter(EKF). The non-linear characteristics of the Li-Ion RC battery model used in this study is also solved through EKF. The proposed method is simulated in a Matlab environment with a Li-Ion Kokam battery (3.7V, 1,500mAh). Results showed that there is an improvement in the estimation error when using the proposed model compared to the conventional current integral method.

PI 상태관측기를 이용한 리튬폴리머 배터리 SOC 추정 (The State of Charge Estimation for Lithium-Polymer Battery using a PI Observer)

  • 이준원;조종민;김성수;차한주
    • 전력전자학회논문지
    • /
    • 제20권2호
    • /
    • pp.175-181
    • /
    • 2015
  • In this study, a lithium polymer battery (LiPB) is simply expressed by a primary RC equivalent model. The PI state observer is designed in Matlab/Simulink. The non-linear relationship with the OCV-SOC is represented to be linearized with 0.1 pu intervals by using battery parameters obtained by constant-current pulse discharge. A state equation is configured based on battery parameters. The state equation, which applied Peukert's law, can estimate SOC more accurately. SOC estimation capability was analyzed by utilizing reduced Federal Test Procedure (FTP-72) current profile and using a bi-directional DC-DC converter at temperature ($25^{\circ}C$). The PI state observer, which is designed in this study, indicated a SOC estimation error rate of ${\pm}2%$ in any of the initial SOC states. The PI state observer confirms a strong SOC estimation performance despite disturbances, such as modeling errors and noise.

State Estimation Technique for VRLA Batteries for Automotive Applications

  • Duong, Van Huan;Tran, Ngoc Tham;Choi, Woojin;Kim, Dae-Wook
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.238-248
    • /
    • 2016
  • The state-of-charge (SOC) and state-of-health (SOH) estimation of batteries play important roles in managing batteries for automotive applications. However, an accurate state estimation of a battery is difficult to achieve because of certain factors, such as measurement noise, highly nonlinear characteristics, strong hysteresis phenomenon, and diffusion effect of batteries. In certain vehicular applications, such as idle stop-start systems (ISSs), significant errors in SOC/SOH estimation may lead to a failure in restarting a combustion engine after the shut-off period of the engine when the vehicle is at rest, such as at a traffic light. In this paper, a dual extended Kalman filter algorithm with a dynamic equivalent circuit model of a lead-acid battery is proposed to deal with this problem. The proposed algorithm adopts a battery model by taking into account the hysteresis phenomenon, diffusion effect, and parameter variations for accurate state estimations of the battery. The validity of the proposed algorithm is verified through experiments by using an absorbed glass mat valve-regulated lead-acid battery and a battery sensor cable for commercial ISS vehicles.