• Title/Summary/Keyword: electrical parameter estimation

Search Result 556, Processing Time 0.03 seconds

On-line Friction Estimation and Compensation with a Reduced Model (축소 모델을 이용한 마찰력의 온라인 추정 및 보상 기법)

  • Choi, Jae-Il;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.178-181
    • /
    • 1995
  • In this paper, on-line adaptive friction compensation scheme for the precise position control is presented. 2 DOF system with compliance and friction is used for the plant model. In order to reduce the calculation time for the parameter estimation, 1 DOF estimation model is used. The computer simulation and experimental results show the validity of the supposed scheme.

  • PDF

A Comparative Study Of Maximum Likelihood Method With Bayesian Approach In Statistical Parameter Estimation Of Static Systems (정적계통의 통계적 퍼래미터 추정에 있어 최우도법과 Bayes식방법과의 비교연구)

  • 한만춘;최경삼
    • 전기의세계
    • /
    • v.22 no.2
    • /
    • pp.51-56
    • /
    • 1973
  • The comparative study of maximum likelihood estimation with Bayesian approach was made by statistical & computational methods in center of a priori information of static systems and the effect of a priori information on the accuracy of the estimatiion was also analyzed. Through the numerical computations of some examples by digital computer, we concluded that maximum likelihood method is better than Bayesian estimation except for almost certain a priori informations. The study may therefore contribute in identification problems of dynamical systems connected with a priori informations.

  • PDF

Design of Robust Detector with Noise Variance Estimation Censoring Input Signals over AWGN

  • Lee, Hyeon-Cheol;Halverson, Don R.
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.110-112
    • /
    • 2007
  • As an alternative to the classic linear detector which only assumes noise variance, a new robust detector with noise variance estimation censoring input signals over AWGN is proposed. The results demonstrate that analytic detection probability matches the simulation results for the linear detector and that the new robust detector shows better performance than the linear detector when the number of samples increases.

  • PDF

Robust Speed Sensorless Vector Control of Induction Motor for Parameter Variations (파라메타 변동에 강인한 유도전동기의 속도센서리스 벡터제어)

  • Kim, Sang-Uk;Kim, Seoung-Beom;Kim, Jin-Soo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2113-2116
    • /
    • 1997
  • The speed sensorless vector control of induction motor using the rotor speed and flux estimation is widely used. In practice, these schemes depend on the accurate parameters of the machine. If in the vector control scheme an inaccurate parameter of induction motor due to skin effects and to temperature variations is used. it is difficult to achieve correct field orientation. From this reason. we propose robust speed sensorless vector control of induction motor against the variations of parameter and disturbance by using extended Kalman filter. For speed and rotor flux estimation. conventional adaptive flux observer is applied. extended Kalman filter which is correctly capable of estimating rotor flux and load by eliminating virtually influences of structural noises is proposed. Simulation results show the effectiveness of the control strategy proposed here for the induction motor drives.

  • PDF

Performance Improvement in Alternate Mainbeam Nulling by Adaptive Estimation of Convergence Parameters in Linearly Constrained Adaptive Arrays

  • Chang, Byong-Kun;Jeon, Chang-Dae;Song, Dong-Hyuk
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.392-398
    • /
    • 2009
  • A novel approach is presented to improve the array performance of the alternate mainbeam nulling in a linearly constrained adaptive array processor in coherent environment. The convergence parameters in the linearly constrained LMS algorithm with a unit gain constraint and a null constraint in the direction of the desired signal are adaptively estimated to reduce the error power between the desired signal and the array output in the 2-dimensional convergence parameter space. It is shown that the case for estimating the convergence parameter for the unit gain constraint with that for null constraint fixed performs best. Also, it is observed that the proposed method performs significantly better than conventional methods as the number of coherent interferences increases.

Resonant Frequency Estimation of Reradiation Interference at MF from Power Transmission Lines Based on Generalized Resonance Theory

  • Bo, Tang;Bin, Chen;Zhibin, Zhao;Zheng, Xiao;Shuang, Wang
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1144-1153
    • /
    • 2015
  • The resonant mechanism of reradiation interference (RRI) over 1.7MHz from power transmission lines cannot be obtained from IEEE standards, which are based on researches of field intensity. Hence, the resonance is ignored in National Standards of protecting distance between UHV power lines and radio stations in China, which would result in an excessive redundancy of protecting distance. Therefore, based on the generalized resonance theory, we proposed the idea of applying model-based parameter estimation (MBPE) to estimate the generalized resonance frequency of electrically large scattering objects. We also deduced equation expressions of the generalized resonance frequency and its quality factor Q in a lossy open electromagnetic system, i.e. an antenna-transmission line system in this paper. Taking the frequency band studied by IEEE and the frequency band over 1.7 MHz as object, we established three models of the RRI from transmission lines, namely the simplified line model, the tower line model considering cross arms and the line-surface mixed model. With the models, we calculated the scattering field of sampling points with equal intervals using method of moments, and then inferred expressions of Padé rational function. After calculating the zero-pole points of the Padé rational function, we eventually got the estimation of the RRI’s generalized resonant frequency. Our case studies indicate that the proposed estimation method is effective for predicting the generalized resonant frequency of RRI in medium frequency (MF, 0.3~3 MHz) band over 1.7 MHz, which expands the frequency band studied by IEEE.

Rotor Resistance Estimation Using Slip Angular Velocity In Vector-Controlled Induction Motor (벡터제어 유도전동기의 슬립 각속도를 이용한 회전자 저항 추정)

  • Park, Hyunsu;Jo, Gwon-Jae;Choi, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1308-1316
    • /
    • 2018
  • Accurate tuning of parameter is very important in vector-controlled induction motor. Among the parameters of induction motor, detuning of rotor resistance used in controller design deteriorates drive performance. This paper presents a novel rotor resistance estimation strategy using slip angular velocity in vector-controlled induction motor drives. The slip angular velocity can be calculated by two methods. Firstly, it can be induced from the rotor voltage equation. Secondly, it can be induced from the difference between synchronous angular velocity and rotor angular velocity. The first method includes the rotor resistance, while the second method dose not include this parameter. From this fact, the rotor resistance can be identified by comparing the slip angular velocities in the two methods. In the tuned states of the rotor resistance, performances of flux estimator and speed drive are discussed. The simulation and experimental results are given to verify the validity of the proposed method in various situations.

Optimal nonlinear Parameter Estimation of Steady-State Induction Motor using Immune Algorithm

  • Kim, Dong-Hwa;Cho, Jae-Hoon;Hong, Won-Pyo;Lee, Seung-Hack;Lee, Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.891-895
    • /
    • 2004
  • This paper suggests the techniques in determining the values of the steady-state equivalent circuit parameters of a three-phase squirrel-cage induction machine using immune algorithm. The parameter estimation procedure is based on the steady state phase current versus slip and input power versus slip characteristics. The proposed estimation algorithm is of a nonlinear kind based on clonal selection in immune algorithm. The machine parameters are obtained as the solution of a minimization of least-squares cost function by immune algorithm. Simulation shows better results than the conventional approaches.

  • PDF

A Study on Supplied Forecasting of Short-term Electrical Power using Fuzzy Compensative Algorithm

  • Choo Yeon-Gyu;Lee Kwang-Seok;Kim Hyun-Duck
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.779-783
    • /
    • 2006
  • A The estimation of electrical power consumption is becoming more important to supply stabilized electrical power recently. In this paper, we propose a supplied forecasting system of electrical power using Fuzzy Compensative Algorithm to estimate electrical load accurately than the previous. We evaluate a time series of supplied electrical power have the chaotic character using quantitative and qualitative analysis, compose a forecasting system by the maximum change $rate(\alpha)$ of Fuzzy Algorithm and compensative parameter. Simulating it for obtained time series, we can obtain more accurate results than the previous proposed system.

  • PDF

State set estimation based MPC for LPV systems with input constraint

  • Jeong, Seung-Cheol;Kim, Sung-Hyun;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.530-535
    • /
    • 2004
  • This paper considers a state set estimation (SSE) based model predictive control (MPC) for linear parameter- varying (LPV) systems with input constraint. We estimate, at each time instant, a feasible set of all states which are consistent with system model, measurements and a priori information, rather than the state itself. By combining a state-feedback MPC and an SSE, we design an SSE-based MPC algorithm that stabilizes the closed-loop system. The proposed algorithm is solved by semi-de�nite program involving linear matrix inequalities. A numerical example is included to illustrate the performance of the proposed algorithm.

  • PDF