• Title/Summary/Keyword: electrical noise effect

Search Result 377, Processing Time 0.03 seconds

The Study on an Electric Noise Effect using Physical Scale Modeling (축소모형 실험을 이용한 전기적 잡음에 관한연구)

  • Yun, Jeum-Dong;Song, Young-Su;So, Kyung-Mok
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.297-302
    • /
    • 2007
  • Recently, electrical resistivity survey is used in the various fields and applied to urban area with many electrical noises. Therefor it's necessary to observe the electrical noise effect of the geological structure. The physical scale modeling was conducted for measuring the electric noise effect of the two geological models at various distances, depths and diameters of the electric noise objects. The results are as following. 1. When conductive noise object was vertical to the strike of geological structure and moved to the strike direction, the effect of conductive noise object at various separated distances to the measurement line was disappeared at a half distance measurement line length regardless of electrode arrays. 2. When conductive noise object was vertical to the strike of geological structure and moved to the strike direction, the effect of conductive noise object at various depths was disappeared at 4unit apart from the measurement line regardless of electrode arrays. 3. When conductive noise object was vertical to the strike of geological structure and moved to the strike direction, the effect of conductive noise object at various diameters was disappeared at 4unit apart from the measurement line regardless of electrode arrays.

  • PDF

Electrical Noise Reduction and Stiffness Increase with Self Force-Balancing Effect in a High-Resolution Capacitive Microaccelerometer using Branched Finger Electrodes with High-Amplitude Sense Voltage (고감지전압 및 가지전극을 이용한 고정도 정전용량형 미소가속도계의 전기적 잡음 감소 및 자율 균형력 발생에 의한 강성 증가)

  • Han, Gi-Ho;Jo, Yeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.4
    • /
    • pp.169-174
    • /
    • 2002
  • This paper presents a high-resolution capactive microaccelerometer using branched finger electrodes with high-amplitude sense voltage. From the fabricated microacceleromcter, the total noise is obtained as 9 $\mu\textrm{g}$/√Hz at the sense voltage of 16.5V, while the conventional microaccelerometers have shown the noire level of 25~800 $\mu\textrm{g}$/√Hz. We reduce the mechanical noise level of the microaccelerometer by increasing the proof-class based on deep RIE process of an SOI wafer. We reduce the electrical noise level by increasing the amplitude of AC sense voltage. The nonlinearity problem caused by the high-amplitude sense volage has been solved by a new electrode design of branched finger type, resulting in self force-balancing effects for the enhanced linearity and bandwidth. The fabricated microaccelerometer shows the electrical noise of 2.4 $\mu\textrm{g}$/√Hz at the sense voltage of 16.5V, which is an order of magnitude reduction of the electrical noise of 24.3 $\mu\textrm{g}$/√Hz measured at 0.9V. For the sense voltage higher than 2V, the electrical noise of the microaccelerometer is lower than the voltage-independent mechanical noise of 11 $\mu\textrm{g}$/√Hz. Total noise, composed of the electrical noise and the mechanical noire, has been measured as 9 $\mu\textrm{g}$/√Hz at the sense voltage of 16.5V, which is 31% of the total noise of 28.6 $\mu\textrm{g}$/√Hz at the sense voltage 0.9V. The self force-balancing effect in the blanched finger electrodes increases the stiffness of the microaccelerometer from 1.1N/m to 1.61N/m as the sense voltage increases from 0V to 17.8V, thereby generating additional stiffness at the rate of 0.0016$\pm$0.0008 N/m/V$^2$.

Impact of Eccentricity and Demagnetization Faults on Magnetic Noise Generation in Brushless Permanent Magnet DC Motors

  • Rezig, Ali;Mekideche, Mohammed Rachid;Djerdir, Abdesslem
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.356-363
    • /
    • 2011
  • Vibrations and noise in electrical machines are directly related to the characteristics of the radial forces on one hand, and mechanical behavior on the other [1, 4]. The characteristics of these forces depend on the air gap flux density, which is also influenced by other factors, such as stator slots and poles, saturation level, winding type, and certain faults. The aim of this work is to investigate the effect of eccentricity and demagnetization faults on electromagnetic noise generated by the external surface of Permanent Magnet Synchronous Machine [PMSM]. For this purpose, an analytical electromagnetic vibroacoustic model is developed. The results confirm the effect of eccentricity and demagnetization fault in generating some low modes radial forces.

Analytical Thermal Noise Model of Deep-submicron MOSFETs

  • Shin, Hyung-Cheol;Kim, Se-Young;Jeon, Jong-Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.3
    • /
    • pp.206-209
    • /
    • 2006
  • This paper presents an analytical noise model for the drain thermal noise, the induced gate noise, and their correlation coefficient in deep-submicron MOSFETs, which is valid in both linear region and saturation region. The impedance field method was used to calculate the external drain thermal noise current. The effect of channel length modulation was included in the analytical equation. The noise behavior of MOSFETs with decreasing channel length was successfully predicted from our model.

DFT-based Power System Frequency Estimation using Two Digital Filters for Noise Effect Reduction (잡음영향의 저감을 위한 두 디지털 필터들의 사용에 의한 DFT 기반의 계통주파수 추정)

  • Hwang, Jin Kwon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.891-897
    • /
    • 2013
  • The power system frequency plays an important role in monitoring and controlling the power system. The frequency can be measured through discrete Fourier transform (DFT) coefficients of its positive fundamental frequency. The accuracy of the frequency estimate is severely affected by noise in the power system signal and the leakage effect of the negative fundamental frequency in DFT. This paper proposes a DFT-based frequency estimation algorithm to cope with the noise as well as the leakage effect. In this algorithm, two suitable digital filters are introduced to reduce efficiently frequency estimate error due to the noise. These filters are designed to use a digital bandpass filter and a second-degree integrator. The effectiveness of the proposed algorithm in reduction of frequency estimate error is verified through simulations on noise, harmonics and frequency deviation.

Psophometeric Noise Voltage of Telecommunication Lines and Test methods (통신회선의 잡음전압 기준 및 측정법)

  • Hwang, Jong-Sun;Kim, Yeong-Min;Lee, Kyoung-Wook;Kim, Jae-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.617-620
    • /
    • 2001
  • The protection of communication lines against harmful effects from electricity lines is very important with the rapid development of communications network. This paper is introduced the reference of noise voltage and the test methods of foreign countries. Further we will also present study measurement equipment for telecommunications noise voltage and circuit noise phenomenon.

  • PDF

Psophometeric Noise Voltage of Telecommunication Lines and Test methods (통신회선의 잡음전압 기준 및 측정법)

  • 황종선;김영민;이경욱;김재준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.617-620
    • /
    • 2001
  • The protection of communication lines against harmful effects from electricity lines is very important with the rapid development of communications network. This paper is introduced the reference of noise voltage and the test methods of foreign coutnreis. Further we will also present study measurement equipment for telecommunications noise voltage and circuit noise phenomenon.

  • PDF

Optimization and Characterization of Gate Electrode Dependent Flicker Noise in Silicon Nanowire Transistors

  • Anandan, P.;Mohankumar, N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1343-1348
    • /
    • 2014
  • The low frequency noise in Silicon Nanowire Field Effect Transistors is analyzed by characterizing the gate electrode dependence on various geometrical parameters. It shows that gate electrodes have a strong impact in the flicker noise of Silicon Nanowire Field effect transistors. Optimization of gate electrode was done by comparing different performance metrics such a DIBL, SS, $I_{on}/I_{off}$ and fringing capacitance using TCAD simulations. Molybdenum based gate electrode showed significant improvement in terms of high drive current, Low DIBL and high $I_{on}/I_{off}$. The noise power sepctral density is reduced by characterizing the device at higher frequencies. Silicon Nanowire with Si3N4 spacer decreases the drain current spectral density which interms reduces the fringing fields there by decreasing the flicker noise.

Noise Mitigation for Target Tracking in Wireless Acoustic Sensor Networks

  • Kim An, Youngwon;Yoo, Seong-Moo;An, Changhyuk;Wells, Earl
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1166-1179
    • /
    • 2013
  • In wireless sensor network (WSN) environments, environmental noises are generated by, for example, small passing animals, crickets chirping or foliage blowing and will interfere target detection if the noises are higher than the sensor threshold value. For accurate tracking by acoustic WSNs, these environmental noises should be filtered out before initiating track. This paper presents the effect of environmental noises on target tracking and proposes a new algorithm for the noise mitigation in acoustic WSNs. We find that our noise mitigation algorithm works well even for targets with sensing range shorter than the sensor separation as well as with longer sensing ranges. It is also found that noise duration at each sensor affects the performance of the algorithm. A detection algorithm is also presented to account for the Doppler effect which is an important consideration for tracking higher-speed ground targets. For tracking, we use the weighted sensor position centroid to represent the target position measurement and use the Kalman filter (KF) for tracking.