• Title/Summary/Keyword: electrical grid

Search Result 2,232, Processing Time 0.028 seconds

Study on the Dynamic Synchronizing Control of An Islanded Microgrid (독립운전 마이크로그리드의 능동형 동기 투입 제어에 관한 연구)

  • Cho, Chang-Hee;Jeon, Jin-Hong;Kim, Jong-Yul;Kwon, Soon-Man;Kim, Sung-Shin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1112-1121
    • /
    • 2011
  • A microgrid is an aggregation of multiple distributed generators (DGs) such as renewable energy sources, conventional generators, and energy storage systems that provide both electric power and thermal energy. Generally, a microgrid operates in parallel with the main grid. However, there are cases in which a microgrid operates in islanded mode, or in a disconnected state. Islanded microgrid can change its operational mode to grid-connected operation by reconnection to the grid, which is referred to as synchronization. Generally, a single machine simply synchronizes with the grid using a synchronizer. However, the synchronization of microgrid that operate with multiple DGs and loads cannot be controlled by a traditional synchronizer, but needs to control multiple generators and energy storage systems in a coordinated way. This is not a simple job, considering that a microgrid consists of various power electronics-based DGs as well as alternator-based generators that produce power together. This paper introduces the results of research examining an active synchronizing control system that consists of the network-based coordinated control of multiple DGs. Consequently, it provides the microgrid with a deterministic and reliable reconnection to the grid. The proposed method is verified by using the test cases with the experimental setup of a microgrid pilot plant.

A Study on the Method to Evaluate Minimum Capacity of Energy Storage System(ESS) for Micro-Grid Design (마이크로그리드(MG)의 설계를 위한 에너지저장장치(ESS)의 최소용량산정 기법에 관한 연구)

  • Lee, Jae-Gul;Shin, Jeong-Hoon;Choy, Young-Do;Nam, Su-Chul;Kim, Tae-Kyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.52-58
    • /
    • 2009
  • In this paper, we propose a probability method to determine minimum capacity of energy storage system(ESS) for Micro-grid Because of high capital cost of ESS, It's very important to determine optimal capacity of ESS and for stable operation of Micro grid(MG), we should determine minimum capacity of ESS. The proposed method has abilities to consider forced outage rate of generators and intermittent of non-dispatchable generators and minimum capacity make MG keep energy balancing by oneself.

Coordinated Control of Reactive Power between STATCOMs and Wind Farms for PCC Voltage Regulation

  • Nguyen, Thanh Hai;Lee, Dong-Choon;Van, Tan Luong;Kang, Jong-Ho
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.909-918
    • /
    • 2013
  • This paper proposes a coordinated control of the reactive power between the STATCOMs (static synchronous compensators) and the grid-side converters (GSC) of wind farms equipped with PMSGs (permanent-magnet synchronous generators), by which the voltage fluctuations at the PCC (point of common coupling) are mitigated in the steady state. In addition, the level of voltage sags is reduced during grid faults. To do this, the GSC and the STATCOM supply reactive power to the grid coordinately, where the GSCs are fully utilized to provide the reactive power for the grid prior to the STATCOM operation. For this, the GSC capability of delivering active and reactive power under variable wind speed conditions is analyzed in detail. In addition, the PCC voltage regulation of the power systems integrated with large wind farms are analyzed for short-term and long-term operations. With this coordinated control scheme, the low power capacity of STATCOMs can be used to achieve the low-voltage ride-through (LVRT) capability of the wind farms during grid faults. The effectiveness of the proposed strategy has been verified by PSCAD/EMTDC simulation results.

Voltage Measurement Accuracy Assessment System for Distribution Equipment of Smart Distribution Network

  • Cho, Jintae;Kwon, Seong-chul;Kim, Jae-Han;Won, Jong-Nam;Cho, Seong-Soo;Kim, Juyong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1328-1334
    • /
    • 2015
  • A new system for evaluating the voltage management errors of distribution equipment is presented in this paper. The main concept of the new system is to use real distribution live-line voltage to evaluate and correct the voltage measurement data from distribution equipment. This new approach is suitable for a new Distribution Management System (DMS) which has been developed for a distribution power system due to the connection of distributed generation growth. The data from distribution equipment that is installed at distribution lines must be accurate for the performance of the DMS. The proposed system is expected to provide a solution for voltage measurement accuracy assessment for the reliable and efficient operation of the DMS. An experimental study on actual distribution equipment verifies that this voltage measurement accuracy assessment system can assess and calibrate the voltage measurement data from distribution equipment installed at the distribution line.

A Novel Photovoltaic Power Harvesting System Using a Transformerless H6 Single-Phase Inverter with Improved Grid Current Quality

  • Radhika, A.;Shunmugalatha, A.
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.654-665
    • /
    • 2016
  • The pumping of electric power from photovoltaic (PV) farms is normally carried out using transformers, which require heavy mounting structures and are thus costly, less efficient, and bulky. Therefore, transformerless schemes are developed for the injection of power into the grid. Compared with the H4 inverter topology, the H6 topology is a better choice for pumping PV power into the grid because of the reduced common mode current. This paper presents how the perturb and observe (P&O) algorithm for maximum power point tracking (MPPT) can be implemented in the H6 inverter topology along with the improved sinusoidal current injected to the grid at unity power factor with the average current mode control technique. On the basis of the P&O MPPT algorithm, a power reference for the present insolation level is first calculated. Maintaining this power reference and referring to the AC sine wave of bus bars, a sinusoidal current at unity power factor is injected to the grid. The proportional integral (PI) controller and fuzzy logic controller (FLC) are designed and implemented. The FLC outperforms the PI controller in terms of conversion efficiency and injected power quality. A simulation in the MATLAB/SIMULINK environment is carried out. An experimental prototype is built to validate the proposed idea. The dynamic and steady-state performances of the FLC controller are found to be better than those of the PI controller. The results are presented in this paper.

Particle Agglomeration of a Bipolar Charging System with a Control Grid (제어전극을 갖는 쌍극성 하전장치의 입자응집 특성)

  • Moon, Jae-Duk;Ahn, Chang-Jin
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.10
    • /
    • pp.465-470
    • /
    • 2005
  • In this paper. an experimental study, for method of increasing the efficiency of electrostatic precipitator for the collection of submicron-sized particles has been studied. All AC electric field was used to induce agglomeration of bipolory charged Particles. .4 bipolar AC-agglomeration system. consisted with a multineedle-mesh discharge system with a control grid, was proposed and investigated. Systematic experiments were carried out to investigate the agglomeration ratio of the AC-agglomeration system as a function of the different grid spacings and grid resistances for the submicron particles generated from liquid prorhane gas burning. The agglomeration ratios, which indicate the particle numbers before and after agglomeration of the test particles in number concentration base, were found to be 0.87, 1.80, 3.86, 9.50 and, 11.00 times for the particle sizes of 0.3. 0.5, 0.7, 1.0, and 2.0$\mu$m at applied voltage of 3.5kV, respectively which showed that the fine particle numbers were decreased while the larger particle numbers were increase greatly.

A Study on Grounding Resistance Measurement of Power Supplying Substation using Grounding Current Division Factor and FOP Profile Method (접지전류 분류계수 및 전위강하곡선법을 이용한 운전 중인 변전소의 접지저항 측정 방법에 관한 연구)

  • An, Yong-Ho;Choi, Jong-Ki;Kim, Yong-Hak;Han, Jeong-Yeol;Lee, You-Jin;Han, Byoung-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.100-107
    • /
    • 2011
  • Since transmission and distribution neutral wires are connected with a substation grounding grid, it is very difficult to measure grounding resistance of isolated substation grounding grid after the substation is energized. It is impractical to isolate the grounding grid from other parallel connections such as distribution line neutrals and overhead ground wires for grounding resistance measurement only. In this paper, we proposed and demonstrated a novel measurement method of grounding resistance of isolated substation grounding grid. For this method, grounding current division factor and conventional FOP(Fall-Of-Potential) profiles were measured at power supplying 154[kV] substation. The obtained FOP profile was processed with the measured grounding current division factor to produce the grounding resistance of isolated grounding grid. Simulated FOP profile agreed well with the measured one showing the validity of the proposed method.

Modal Analysis and Testing for a Middle Spacer Grid of a Nuclear Fuel Rod (핵 연료봉 중간 지지격자의 모달 해석 및 실험)

  • Ryu, Bong-Jo;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1948-1952
    • /
    • 2012
  • The paper presents modal testing and analysis in order to obtain the dynamic characteristics of a middle spacer grids of a nuclear fuel rod. A spacer grid is one of the important structural elements supporting nuclear fuel rods. Such a fuel rod can be oscillated by its thermal expansion, neutron irradiation and etc. due to cooling water flow under the operation of a nuclear power plant. When the fuel rod vibrates, fretting wear due to repeated friction motion between the fuel rods and spacer grids can be occurred, and so the fuel rod is damaged. In this paper, through modal analysis and testing, natural frequencies and modes of a middle spacer grid were calculated, and the following conclusions were obtained. Firstly the numerical first-seven natural frequencies for spacer grids of a fuel rod having complicated structures have a small difference within 3.8% with experimental natural frequencies, and so the suitability of simulation results was verified. Secondly, experimental mode shapes for a middle spacer grid of a nuclear fuel rod were verified by obtaining lower non-diagonal terms through MAC(Modal Assurance Criteria), and were confirmed by the simulation modes.

Design Considerations for a Distributed Generation System Using a Voltage-Controlled Voltage Source Inverter

  • Ko, Sung-Hun;Lee, Su-Won;Lee, Seong-Ryong;Naya, Chemmangot V.;won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.643-653
    • /
    • 2009
  • Voltage-controlled voltage source inverter (VCVSI) based distributed generation systems (DGS) using renewable energy sources (RES) is becoming increasingly popular as grid support systems in both remote isolated grids as well as end of rural distribution lines. In VCVSI based DGS for load voltage stabilization, the power angle between the VCVSI output voltage and the grid is an important design parameter because it affects not only the power flow and the power factor of the grid but also the capacity of the grid, the sizing of the decoupling inductor and the VCVSI. In this paper, the steady state modeling and analysis in terms of power flow and power demand of the each component in the system at the different values of maximum power angle is presented. System design considerations are examined for various load and grid conditions. Experimental results conducted on a I KVA VCVSI based DGS prove the analysis and simulation results.

Parameter Identification of 3R-C Equivalent Circuit Model Based on Full Life Cycle Database

  • Che, Yanbo;Jia, Jingjing;Yang, Yuexin;Wang, Shaohui;He, Wei
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1759-1768
    • /
    • 2018
  • The energy density, power density and ohm resistance of battery change significantly as results of battery aging, which lead to decrease in the accuracy of the equivalent model. A parameter identification method of the equivale6nt circuit model with 3 R-C branches based on the test database of battery life cycle is proposed in this paper. This database is built on the basis of experiments such as updating of available capacity, charging and discharging tests at different rates and relaxation characteristics tests. It can realize regular update and calibration of key parameters like SOH, so as to ensure the reliability of parameters identified. Taking SOH, SOC and T as independent variables, lookup table method is adopted to set initial value for the parameter matrix. Meanwhile, in order to ensure the validity of the model, the least square method based on variable forgetting factor is adopted for optimizing to complete the identification of equivalent model parameters. By comparing the simulation data with measured data for charging and discharging experiments of Li-ion battery, the effectiveness of the full life cycle database and the model are verified.