• Title/Summary/Keyword: electrical grid

Search Result 2,232, Processing Time 0.027 seconds

Position error compensation of the multi-purpose overload robot in nuclear power plants

  • Qin, Guodong;Ji, Aihong;Cheng, Yong;Zhao, Wenlong;Pan, Hongtao;Shi, Shanshuang;Song, Yuntao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2708-2715
    • /
    • 2021
  • The Multi-Purpose Overload Robot (CMOR) is a key subsystem of China Fusion Engineering Test Reactor (CFETR) remote handling system. Due to the long cantilever and large loads of the CMOR, it has a large rigid-flexible coupling deformation that results in a poor position accuracy of the end-effector. In this study, based on the Levenberg-Marquardt algorithm, the spatial grid, and the linearized variable load principle, a variable parameter compensation model was designed to identify the parameters of the CMOR's kinematics models under different loads and at different poses so as to improve the trajectory tracking accuracy. Finally, through Adams-MATLAB/Simulink, the trajectory tracking accuracy of the CMOR's rigid-flexible coupling model was analyzed, and the end position error exceeded 0.1 m. After the variable parameter compensation model, the average position error of the end-effector became less than 0.02 m, which provides a reference for CMOR error compensation.

Maximum Efficiency Point Tracking Algorithm Using Oxygen Access Ratio Control for Fuel Cell Systems

  • Jang, Min-Ho;Lee, Jae-Moon;Kim, Jong-Hoon;Park, Jong-Hu;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.194-201
    • /
    • 2011
  • The air flow supplied to a fuel cell system is one of the most significant factors in determining fuel efficiency. The conventional method of controlling the air flow is to fix the oxygen supply at an estimated constant rate for optimal efficiency. However, the actual optimal point can deviated from the pre-set value due to temperature, load conditions and so on. In this paper, the maximum efficiency point tracking (MEPT) algorithm is proposed for finding the optimal air supply rate in real time to maximize the net-power generation of fuel cell systems. The fixed step MEPT algorithm has slow dynamics, thus it affects the overall efficiency. As a result, the variable step MEPT algorithm is proposed to compensate for this problem instead of a fixed one. The complete small signal model of a PEM Fuel cell system is developed to perform a stability analysis and to present a design guideline. For a design example, a 1kW PEM fuel cell system with a DSP 56F807 (Motorola Inc) was built and tested using the proposed MEPT algorithm. This control algorithm is very effective for a soft current change load like a grid connected system or a hybrid electric vehicle system with a secondary energy source.

Development of Operation Scenarios by HILS for the Energy Storage System Operated with Renewable Energy Source (HILS를 이용한 신재생 에너지원이 포함된 에너지 저장시스템의 운영 시나리오 개발)

  • Shin, Dong-Cheol;Jeon, Jee-Hwan;Park, Sung-Jin;Lee, Dong-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.224-232
    • /
    • 2018
  • According to government policy, renewable energy facility such as solar power generation is being implemented for newly constructed buildings. In recent years, the introduction of Energy Storage System (ESS) served as an emergency power for replacing an existing diesel generator has been increasing. Furthermore, in order to expand the efficacy of the ESS operation, operation in combination with renewable energy sources such as solar and wind power generation is increasing. Hence, development of the ESS operation algorithms for emergency mode as well as the peak power cut mode, which is the essential feature of ESS, are necessary. The operational scenarios of ESS need to consider load power requirement and the amount of the power generation by renewable energy sources. For the verification of the developed scenarios, tests under the actual situation are demanded, but there is a difficulty in simulating the emergency operation situation such as system failure in the actual site. Therefore, this paper proposes simulation models for the HILS(Hardware In the Loop Simulation) and operation modes developed through HILS for the ESS operated with renewable energy source under peak power reduction and emergency modes. The paper shows that the ESS operation scenarios developed through HILS work properly at the actual site, and it verifies the effectiveness of the control logic developed by the HILS.

Comparative Analysis of Sequence Control in Six Series-Connected ITER VS Converters (6 직렬 연결된 ITER VS 컨버터의 시퀀스제어 비교 해석)

  • Jo, Hyunsik;Jeong, Jinyong;Jo, Jongmin;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.399-406
    • /
    • 2014
  • This study investigates the structure and operation of the ITER VS converter and proposes a sequence control method for six series-connected VS converters to reduce reactive power. The operation and the proposed sequence control method are verified through RTDS simulation. The ITER VS converter must supply voltage/current to the superconducting magnets for plasma current vertical stabilization, and the four-quadrant operation must proceed without a zero-current discontinuous section. The operation mode of the VS converter is separated into a 12- and 6-pulse circulating current and transition modes according to the size of the load current. The output voltage of the unit VS converter is limited because of the rated voltage; however, the superconducting coil must increase the operating output voltage. Thus, the VS converter must be connected in a 6-series to provide the required operating output voltage. The output voltage of the VS converters is controlled continuously; however, reactive power is limited within a minimized value of the grid. In this study, the unit converter is compared with converters connected in a 6-series to determine a suitable sequence control method. The output voltage is the same in all cases, but the maximum reactive power is reduced from 100% to 73%. This sequence control method is verified through RTDS simulation.

Fast Detection Algorithm for Voltage Sags and Swells Based on Delta Square Operation for a Single-Phase Inverter System

  • Lee, Woo-Cheol;Sung, Kook-Nam;Lee, Taeck-Kie
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.157-166
    • /
    • 2016
  • In this paper, a new sag and peak voltage detector is proposed for a single-phase inverter using delta square operation. The conventional sag detector is from a single-phase digital phase-locked loop (DPLL) that is based on d-q transformations using an all-pass filter (APF). The d-q transformation is typically used in the three-phase coordinate system. The APF generates a virtual q-axis voltage component with a 90° phase delay, but this virtual phase cannot reflect a sudden change in the grid voltage at the instant the voltage sag occurs. As a result, the peak value is drastically distorted, and it settles down slowly. A modified APF generates the virtual q-axis voltage component from the difference between the current and the previous values of the d-axis voltage component in the stationary reference frame. However, the modified APF cannot detect the voltage sag and peak value when the sag occurs around the zero crossing points such as 0° and 180°, because the difference voltage is not sufficient to detect the voltage sag. The proposed algorithm detects the sag voltage through all regions including the zero crossing voltage. Moreover, the exact voltage drop can be acquired by calculating the q-axis component that is proportional to the d-axis component. To verify the feasibility of the proposed system, the conventional and proposed methods are compared using simulations and experimental results.

An application of LAPO: Optimal design of a stand alone hybrid system consisting of WTG/PV/diesel generator/battery

  • Shiva, Navid;Rahiminejad, Abolfazl;Nematollahi, Amin Foroughi;Vahidi, Behrooz
    • Advances in Energy Research
    • /
    • v.7 no.1
    • /
    • pp.67-84
    • /
    • 2020
  • Given the recent surge of interest towards utilization of renewable distributed energy resources (DER), in particular in remote areas, this paper aims at designing an optimal hybrid system in order to supply loads of a village located in Esfarayen, North Khorasan, Iran. This paper illustrates the optimal design procedure of a standalone hybrid system which consists of Wind Turbine Generator (WTG), Photo Voltaic (PV), Diesel-generator, and Battery denoting as the Energy Storage System (ESS). The WTGs and PVs are considered as the main producers since the site's ambient conditions are suitable for such producers. Moreover, batteries are employed to smooth out the variable outputs of these renewable resources. To this end, whenever the available power generation is higher than the demanded amount, the excess energy will be stored in ESS to be injected into the system in the time of insufficient power generation. Since the standalone system is assumed to have no connection to the upstream network, it must be able to supply the loads without any load curtailment. In this regard, a Diesel-Generator can also be integrated to achieve zero loss of load. The optimal hybrid system design problem is a discrete optimization problem that is solved, here, by means of a recently-introduced meta-heuristic optimization algorithm known as Lightning Attachment Procedure Optimization (LAPO). The results are compared to those of some other methods and discussed in detail. The results also show that the total cost of the designed stand-alone system in 25 years is around 92M€ which is much less than the grid-connected system with the total cost of 205M€. In summary, the obtained simulation results demonstrate the effectiveness of the utilized optimization algorithm in finding the best results, and the designed hybrid system in serving the remote loads.

A Bidirectional Dual Buck-Boost Voltage Balancer with Direct Coupling Based on a Burst-Mode Control Scheme for Low-Voltage Bipolar-Type DC Microgrids

  • Liu, Chuang;Zhu, Dawei;Zhang, Jia;Liu, Haiyang;Cai, Guowei
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1609-1618
    • /
    • 2015
  • DC microgrids are considered as prospective systems because of their easy connection of distributed energy resources (DERs) and electric vehicles (EVs), reduction of conversion loss between dc output sources and loads, lack of reactive power issues, etc. These features make them very suitable for future industrial and commercial buildings' power systems. In addition, the bipolar-type dc system structure is more popular, because it provides two voltage levels for different power converters and loads. To keep voltage balanced in such a dc system, a bidirectional dual buck-boost voltage balancer with direct coupling is introduced based on P-cell and N-cell concepts. This results in greatly enhanced system reliability thanks to no shoot-through problems and lower switching losses with the help of power MOSFETs. In order to increase system efficiency and reliability, a novel burst-mode control strategy is proposed for the dual buck-boost voltage balancer. The basic operating principle, the current relations, and a small-signal model of the voltage balancer are analyzed under the burst-mode control scheme in detail. Finally, simulation experiments are performed and a laboratory unit with a 5kW unbalanced ability is constructed to verify the viability of the bidirectional dual buck-boost voltage balancer under the proposed burst-mode control scheme in low-voltage bipolar-type dc microgrids.

A Study on the Electrical Load Matching Analisys for the optimal utilization of grid-conntected PV system in Apartment Complex (공동주택의 태양광시스템 적용성 평가를 위한 전기부하 매칭 해석연구)

  • Yoon, Jong-Ho;Park, Jae-Sung;Shin, U-Cheul;Park, Jae-Wan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.49-54
    • /
    • 2008
  • This study is to investigate an optimal size and position of PV system for apartment complex enough the electrical load matching analysis. The 4 types of arrangements of apartment buildings are considered as follows; ㅡtype, alternative ㅡtype, ㄱtype and ㅁtype. We assume that the studied site is composed of 9 buildings. Firstly, solar access evaluation of roof and facade in apartment buildings was performing with the hourly simulations of total received insolation on each surface considering the hading effect of buildings. Electrical load profile of typical Korean apartments was investigated for the lad matching analysis. To calculate an annual total PV output, we used MERIT program which is a sourly based load matching tool developed by ESRU. TRY weather data of Daejeon are applied for this analysis. Result shows that approximately 11% of total electric load of the site can be supplied by the PV system in the case of full installation of PV system at the whole south-face roof area of 9 buildings in this stuided apartment complex. Depending of a various installation option of roof and facade area, the possible ratio of PV supply in total electrical load varies from 9% to 42%. Among the 4 arrangement types, the ㅡ type revealed the best option for the maximum output of PV system.

  • PDF

A Study on the Development of Soil Moisture Measuring Unit (인공토조용(人工土槽用) 토양함수율(土壤含水率) 측정기(測程器) 개발(開發)에 관(關)한 연구(硏究))

  • Park, J.G.;Lee, S.K.;Rhee, J.Y.
    • Journal of Biosystems Engineering
    • /
    • v.11 no.2
    • /
    • pp.14-22
    • /
    • 1986
  • This study was carried out to find a method which can be used to measure the soil moisture content of the soil bin exactly and quickly. And gypsum block is used as an instrument in measuring soil moisture content in the field of green house farming, etc.. However the characteristics of gypsum block, or the guide line of making gypsum block is not well introduced in Korea. So the information about gypsum block such as the density of gypsum, type of electrode, dimension of electrode, distance between electrodes, density of surrounding soil were included in this study and their effects on the relationship between soil moisture content and electrical resistance were investigated. The results of this study are as follows; 1. The grid type electrode was quicker in accessing the equilibrium condition and showed more sensitive response to the change of soil moisture content than the plate type electrode. 2. The longer the distance between the electrodes, the larger the electrical resistance, and the distance of 3 to 5 mm was recommended. 3. The larger the width of the electrode, the smaller the electrical resistance. However, there was no significance between the levels designed in this study. Considering the size of the gypsum block itself, the adaptible range of width may be 4 to 8 mm. 4. The higher the density of gypsum, the smaller the electrical resistance. And the block of lower density was broken down in the soil of higy moisture content. The optimum ratio of gypsum to water was 7:5. 5. The measuring system used in this study allowed simultaneous, multi-data acquisition. So this system using A/D converter can be applied to the measurement of soil moisture content of soil bin.

  • PDF

Assessment of performance for Output Power Control of Wind Turbine using Energy Storage System (에너지저장장치를 이용한 풍력발전 출력 제어 성능 평가)

  • Hong, Jong-Seok;Choi, Chang-Ho;Lee, Joo-Yeon;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.254-259
    • /
    • 2014
  • In this paper, we describe construction of a wind stabilization demo-site and effects of output power control of wind turbines for suppression of ramp rate using ESS (Energy Storage System). It is difficult to control the output power of distributed generator such as wind turbine which of variation is very large. If the large capacity wind farm be interconnected into power system may cause blackout due to Power Quality. For these reasons, the international standards such as Grid-Code is limited to less than 10 [%/min] of renewable energy ramp rate. The case of Korea, government actively conducts propagating large-scale renewable energy for green growth policy, to interconnecting more renewable energy into power system is necessary for stabilization technology. For these reasons, the POSCO consortium has constructed a wind stabilization demo-site that is configured as 500 [kWh] battery energy storage systems can output up to 3 [C-Rate] and two wind turbines rated 750 [kW]. In POSCO consortium, which implements various methods stabilizing output power of wind turbine such as smoothing, section firming and ramp control, we derive the results of long-term demonstration that can be controlled to satisfy to the international standard about ramp rate [%/kW] of wind turbine output power.