• Title/Summary/Keyword: electrical explosion of wire

Search Result 55, Processing Time 0.03 seconds

Study of complex electrodeposited thin film with multi-layer graphene-coated metal nanoparticles

  • Cho, Young-Lae;Lee, Jung-woo;Park, Chan;Song, Young-il;Suh, Su-Jeong
    • Carbon letters
    • /
    • v.21
    • /
    • pp.68-73
    • /
    • 2017
  • We have demonstrated the production of thin films containing multilayer graphene-coated copper nanoparticles (MGCNs) by a commercial electrodeposition method. The MGCNs were produced by electrical wire explosion, an easily applied technique for creating hybrid metal nanoparticles. The nanoparticles had average diameters of 10-120 nm and quasi-spherical morphologies. We made a complex-electrodeposited copper thin film (CETF) with a thickness of $4.8{\mu}m$ by adding 300 ppm MGCNs to the electrolyte solution and performing electrodeposition. We measured the electric properties and performed corrosion testing of the CETF. Raman spectroscopy was used to measure the bonding characteristics and estimate the number of layers in the graphene films. The resistivity of the bare-electrodeposited copper thin film (BETF) was $2.092{\times}10^{-6}{\Omega}{\cdot}cm$, and the resistivity of the CETF after the addition of 300 ppm MGCNs was decreased by 2% to ${\sim}2.049{\times}10^{-6}{\Omega}{\cdot}cm$. The corrosion resistance of the BETF was $9.306{\Omega}$, while that of the CETF was increased to 20.04 Ω. Therefore, the CETF with MGCNs can be used in interconnection circuits for printed circuit boards or semiconductor devices on the basis of its low resistivity and high corrosion resistance.

Synthesis and Electrochemical Properties of Sn-based Anode Materials for Lithium Ion Battery by Electrical Explosion Method (전기 폭팔법에 의한 Sn계 리튬이차전지용 음극 분말의 제조 및 전기 화학적 특성)

  • Hong, Seong-Hyeon
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.4
    • /
    • pp.504-511
    • /
    • 2011
  • Nano-sized Sn powder was prepared by pulsed wire evaporation method. The Sn powder and carbon black were charged in jar and ball milled. The milling time was varied with 10 min., 1h, 2h, and 4h, respectively. The milled powders were dried and the shape and size were observed by FE-SEM. Nano-sized Sn powders were plastic-deformed and agglomerated by impact force of balls and heat generated during the SPEX milling. The agglomerated Sn powder also consisted of many nano-sized particles. Initial discharge capacities of milled Sn electrode powders with carbon powder were milled for 10 min., 1h, 2h, and 4h were 787, 829, 827, and 816 mAh/g, respectively. After 5 cycle, discharge capacities of Sn electrode powders with carbon powder milled for 10 min., 1h, 2h, and 4h decreased as 271, 331, 351, and 287 mAh/g, respectively. Because Sn electrode powders milled for 2h constist of uniform and fine size, the cyclability of coin cell made of this powders is better than others.

Kinetic and Thermodynamic Features of Combustion of Superfine Aluminum Powders in Air

  • Kwon, Young-Soon;Park, Pyuck-Pa;Kim, Ji-Soon;Gromov, Alexander;Rhee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.11 no.4
    • /
    • pp.308-313
    • /
    • 2004
  • An experimental study on the combustion of superfine aluminum powders (average particle diameter, a$_{s}$: ∼0.1 ${\mu}{\textrm}{m}$) in air is reported. The formation of aluminum nitride during the combustion of aluminum in air and the influence of the combustion scenario on the structures and compositions of the final products are in the focus of this study. The experiments were conducted in an air (pressure: 1 atm). Superfine aluminum powders were produced by the wire electrical explosion method. Such superfine aluminum powder is stable in air but once ignited it can burn in a self-sustaining way due to its low bulk: density (∼0.1 g/㎤) and a low thermal conductivity. During combustion, the temperature and radiation were measured and the actual burning process was recorded by a video camera. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and chemical analysis were performed on the both initial powders and final products. It was found that the powders, ignited by local heating, burned in a two-stage self-propagating regime. The products of the first stage consisted of unreacted aluminum (-70 mass %) and amorphous oxides with traces of AlN. After the second stage the AlN content exceeded 50 mass % and the residual Al content decreased to ∼10 mass %. A qualitative discussion is given on the kinetic limitation for AlN oxidation due to rapid condensation and encapsulation of gaseous AlN.N.

Synthesis of Ni nanopowder by wire explosion in liquid media (액중 전기폭발법을 이용한 니켈 나노분말 제조)

  • Cho, Chu-Hyun;Jin, Yun-Sik;Ha, Yoon-Cheol;Lee, Kyung-Ja;Rhee, Chang-Kyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.61-61
    • /
    • 2010
  • 니켈 니켈 와이어를 증류수 및 에탄올 등의 유기용매 중에서 펄스파워 기술을 이용하여 전기적으로 폭발 시켰다. 폭발에 의하여 생성된 입자들은 직경이 수 마이크로미터 에서 수 십 나노미터에 이르는 넓은 입도분포를 보였다. 본 연구에서는 원심분리기술을 이용하여 입자의 크기별로 분리 회수가 가능함을 증명하였다. 또한 유기용매 중에서 제조된 니켈분말에 탄소가 포함되어 있으며, 열처리를 통하여 제거가 가능함을 실험을 통하여 밝혔다.

  • PDF

Tribological Properties of Cu-Ni Alloy Nanopowders Synthesized by Pulsed Wire Evaporation (PWE) Method (전기 폭발법에 의해 제조된 Cu-Ni 나노 분말의 윤활성 향상)

  • Oh J.S.;Park J.H.;Kim W.W.;Rhee C.K.
    • Journal of Powder Materials
    • /
    • v.11 no.5
    • /
    • pp.376-382
    • /
    • 2004
  • Nanoscale Cu-Ni alloy nanopowders have been produced by a pulsed wire evaporation method in an inert gas. The effect of Cu-Ni alloy nanopowders as additives to motor oil on the tribological properties was studied at room temperature. The worn surfaces were characterized by Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS). Cu-Ni alloy nanopowders as additives lowered coefficient of friction and wear rate. It was found that a copper containing layer on the worn surface was formed, and deposited layers of the metal cladding acted as lubricant on the worn surface, reducing the friction coefficient. It was clearly demonstrated that Cu-Ni alloy nanopowders as additives are able to restore the worn surface and to preserve the friction surfaces from wear.

Synthesis of nanometric tungsten powders by solid state combustion method (고상연소반응법에 의한 나노텅스텐분말의 합성)

  • H.H. Nersisyan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.93-93
    • /
    • 2003
  • Tungsten and tungsten heavy alloys have widespread application as radiation shielding devices and heavy duty electrical contacts. High density and good room temperature mechanical properties have generated interest in evaluating tungsten and tungsten alloys as kinetic energy penetrators against armor. Nowdays ultra fine-grained tungsten powders are in great interest because higly dense structures can be obtained at low temperature, pressure and lower sintering time. Several physical md chemical methods are available for the synthesis of nanometric metal Powders: ball milling, laser abalation, vapor condensation, chemical precipitation, metallic wire explosion i.e. However production rates of the above mentioned methods are low and further efforts are needed to find out large-scale synthesis methods. From this point of view solid state combustion method ( known as SHS) represents undoubted interest.

  • PDF

Battery swelling detection system based on adaptive resistance change on battery pack surface (적응적 배터리 팩 피막 저항 변화 감지를 통한 배터리 스웰링 감지 기법)

  • Sunghyun Park;Kibum Sung;Jaehyun Park;Donghwa Shin
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.85-92
    • /
    • 2023
  • Recently, as the era of the 4th Industrial Revolution approaches, IoT devices that emphasize portability are increasing. At the same time, battery usage is also increasing rapidly. With the rapid increase in battery usage, issues related to battery safety have become inevitable problems and many studies have been conducted. This paper deals with explosion issues caused by swelling among various battery issues, and includes research and development of a system that detects battery swelling by identifying resistance changes. The core technology of this study is to develop a system that frequently detects changes in the resistance of wires drawn on the battery through changes in volume that occur when the battery swelling, and uses the resistance changes to prevent battery explosion. In addition, through pattern analysis, it was analyzed how the wire should be constructed to cause a lot of resistance changes.

Causes of Burn and Emergency Care on the Spot for the Patients Admitted to Three Hospitals in Taegu (대구시내 종합병원에 입원한 화상환자의 화상원인과 현장에서 취한 응급처치)

  • Chu, Min;Park, Jung-Han
    • Journal of Preventive Medicine and Public Health
    • /
    • v.21 no.2 s.24
    • /
    • pp.238-244
    • /
    • 1988
  • This study was conducted to investigate the causes of burn and emergency cares taken on the spot for the burn patient. Study population included 161 burn patients admitted to 2 university hospitals and 1 general hospital in Taegu from November 1, 1987 to April 30, 1988. Patients or guardians were interviewed with a structured questionnare. Out of 161 burn patients 111(68.9%)were males and 50(31.1%) females. Preschool children of 1-4 years old accounted for 29.8% of the total patients. Burns of children under 15 years of age took place at home in 91.0%, while 48.3% of burns of adult (15 years and over)males occurred at the working place, and 68.0% of adult females occurred at the home. Out of total burns occurred at home 39.8% took place at kitchen/dining room and 24.1% in the room. The most common cause of burns in children was the boiling water or hot food (74.3%). In adults the common causes were electrical burn(22.4%), hot water or food(19.0%) and explosion(12.1%) for males, and hot water or food(32.0%) and explosion (20.0%) for females. Common emergency cares for the burn taken on the spot were undressing(64.6%), pouring Soju(liquor)(13.7%), and pouring cold water(5.0%). There were a few cases who applied ash, soy or salt. To prevent burn, it is recommended to remodel the traditional kitchen and coal-briquet hole, to strengthen the safety control of LP Gas and LN Gas supply, to educate the public for the handling method for such gases, to strengthen the occupational safety control, to improve the safety device for the electric wire and socket, and to limit the temperature of hot water at home and public baths.

  • PDF

A study on the Development of Low-loss Type Mold Autotransformers (저손실형 몰드 단권변압기 개발)

  • Lee, Jong-Su;Shin, Myung-Ho;Mun, Byung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.92-94
    • /
    • 2003
  • The autotransformer currently used on the electric railway system is made of class A insulation material and uses the paper insulation method. As a power converter supplying power to the trolley wire, the autotransformer is one of critical equipment in the railway system. In the autotransformer, load irregularly changes and overload often occurs. These cause overheating of the autotransformer and facilitate deterioration of the autotransformer resulting in burnout accidents due to insulation breakdown. Also, the current autotransformer has poor insolation and short-circuit strength which often badly affect the service life of the transformer, and needs to improve its quality urgently. To overcome one of existing shortcomings of the mold transformer, manufacturers use epoxy resins that have superior flame retardancy to get rid of fro and explosion possibilities during accidents. Currently, new mold transformers are used in indoor distribution facilities with fire-fighting equipments. Coils molded in epoxy resins do not have their insulation performance compromised by humidity, dust, etc enabling easy inspection and maintenance. Comparing to the oil immersed transformer, the mold transformer does not have any concern about environmental pollutions by oil leak or replacement Therefore, to reduce breakdowns and improve reliability of the autotransformer, it is necessary to develop a new mold autotransformer with low loss suitable for our environment to suppress breakdowns of the autotransformer and improve the reliability. This study is about development of a low-loss mold autotransformer necessitated by reasons mentioned earlier.

  • PDF