• Title/Summary/Keyword: electrical characteristic

Search Result 4,873, Processing Time 0.032 seconds

Electrical Transport Properties of La2/3TiO2.84 Ceramic (La2/3TiO2.84 세라믹스의 전기전도특성)

  • Jung, Woo-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.11
    • /
    • pp.858-863
    • /
    • 2004
  • The thermoelectric power, dc conductivity and magnetic properties of the cubic L $a_{2}$ 3/Ti $O_{2.84}$ were investigated. The thermoelectric power was negative below 350 K. The measured thermoelectric power of L $a_{2}$ 3/Ti $O_{2.84}$ increased linearly with temperature, in agreement with model proposed by Emin and Wood, and was represented by A+BT. Temperature dependence indicates that the charge carrier in this material is a small polaron. L $a_{2}$ 3/Ti $O_{2.84}$ exhibited a cross over from variable range hopping to small polaron hopping conduction at a characteristic temperature well below room temperature. The low temperature do conduction mechanism in L $a_{2}$ 3/Ti $O_{2.84}$ was analyzed using Mott's approach. Mott parameter analysis gave values for the density of state at Fermi level [N( $E_{F}$)] = 3.18${\times}$10$^{20}$ c $m^{-3}$ e $V^{-1}$ . The disorder energy ( $W_{d}$) was found to be 0.93 eV, However, it was noted that the value of the disorder energy was much higher than the high temperature activation energy. The exist linear relation between log($\sigma$T)와 1/T in the range of 200 to 300 K, the activation energy for small polaron hopping was 0.15 eV.

Hybrid MBE Growth of Crack-Free GaN Layers on Si (110) Substrates

  • Park, Cheol-Hyeon;O, Jae-Eung;No, Yeong-Gyun;Lee, Sang-Tae;Kim, Mun-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.183-184
    • /
    • 2013
  • Two main MBE growth techniques have been used: plasma-assisted MBE (PA-MBE), which utilizes a rf plasma to supply active nitrogen, and ammonia MBE, in which nitrogen is supplied by pyrolysis of NH3 on the sample surface during growth. PA-MBE is typically performed under metal-rich growth conditions, which results in the formation of gallium droplets on the sample surface and a narrow range of conditions for optimal growth. In contrast, high-quality GaN films can be grown by ammonia MBE under an excess nitrogen flux, which in principle should result in improved device uniformity due to the elimination of droplets and wider range of stable growth conditions. A drawback of ammonia MBE, on the other hand, is a serious memory effect of NH3 condensed on the cryo-panels and the vicinity of heaters, which ruins the control of critical growth stages, i.e. the native oxide desorption and the surface reconstruction, and the accurate control of V/III ratio, especially in the initial stage of seed layer growth. In this paper, we demonstrate that the reliable and reproducible growth of GaN on Si (110) substrates is successfully achieved by combining two MBE growth technologies using rf plasma and ammonia and setting a proper growth protocol. Samples were grown in a MBE system equipped with both a nitrogen rf plasma source (SVT) and an ammonia source. The ammonia gas purity was >99.9999% and further purified by using a getter filter. The custom-made injector designed to focus the ammonia flux onto the substrate was used for the gas delivery, while aluminum and gallium were provided via conventional effusion cells. The growth sequence to minimize the residual ammonia and subsequent memory effects is the following: (1) Native oxides are desorbed at $750^{\circ}C$ (Fig. (a) for [$1^-10$] and [001] azimuth) (2) 40 nm thick AlN is first grown using nitrogen rf plasma source at $900^{\circ}C$ nder the optimized condition to maintain the layer by layer growth of AlN buffer layer and slightly Al-rich condition. (Fig. (b)) (3) After switching to ammonia source, GaN growth is initiated with different V/III ratio and temperature conditions. A streaky RHEED pattern with an appearance of a weak ($2{\times}2$) reconstruction characteristic of Ga-polarity is observed all along the growth of subsequent GaN layer under optimized conditions. (Fig. (c)) The structural properties as well as dislocation densities as a function of growth conditions have been investigated using symmetrical and asymmetrical x-ray rocking curves. The electrical characteristics as a function of buffer and GaN layer growth conditions as well as the growth sequence will be also discussed. Figure: (a) RHEED pattern after oxide desorption (b) after 40 nm thick AlN growth using nitrogen rf plasma source and (c) after 600 nm thick GaN growth using ammonia source for (upper) [110] and (lower) [001] azimuth.

  • PDF

Bioactivity behavior of Si and Mg ion-substituted biphasic calcium phosphate powders (Si 및 Mg 이온이 교환된 biphasic calcium phosphate 분말의 생체활성 거동)

  • Kim, Tae-Wan;Kim, Dong-Hyun;Jin, Hyeong-Ho;Lee, Heon-Soo;Park, Hong-Chae;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.2
    • /
    • pp.92-98
    • /
    • 2012
  • The co-precipitation technique has been applied to synthesize biphasic calcium phosphate (BCP). $Ca(NO_3)_2{\cdot}4H_2O$, $(NH_4)_2HPO_4$, TEOS and $Mg(NO_3)_2{\cdot}6H_2O$ as the starting materials was used. After the heat treatment of powder crystalline phases HAp and ${\beta}$-TCP analysis showed a mixed phase. The overall spectra appear to have mainly two modes corresponding to characteristic $PO^{3-}_4$ and $OH^-$ groups. After immersion in Hanks' Balanced Salt Solution (HBSS) for 1 week a precipitation started to be formed with individual small granules on the specimen surface. An MTT assay indicated that ionic substituted BCP powders had no cytotoxic effects on MG-63 cells, and that they have good biocompatibility.

Development of Automatic Sorting System for Black Plastics Using Laser Induced Breakdown Spectroscopy (LIBS) (LIBS를 이용한 흑색 플라스틱의 자동선별 시스템 개발)

  • Park, Eun Kyu;Jung, Bam Bit;Choi, Woo Zin;Oh, Sung Kwun
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.73-83
    • /
    • 2017
  • Used small household appliances have a wide variety of product types and component materials, and contain high percentage of black plastics. However, they are not being recycled efficiently as conventional sensors such as near-infrared ray (NIR), etc. are not able to detect black plastic by types. In the present study, an automatic sorting system was developed based on laser-induced breakdown spectroscopy (LIBS) to promote the recycling of waste plastics. The system we developed mainly consists of sample feeder, automatic position recognition system, LIBS device, separator and control unit. By applying laser pulse on the target sample, characteristic spectral data can be obtained and analyzed by using CCD detectors. The obtained data was then treated by using a classifier, which was developed based on artificial intelligent algorithm. The separation tests on waste plastics also were carried out by using a lab-scale automatic sorting system and the test results will be discussed. The classification rate of the radial basis neural network (RBFNNs) classifier developed in this study was about > 97%. The recognition rate of the black plastic by types with the automatic sorting system was more than 94.0% and the sorting efficiency was more than 80.0%. Automatic sorting system based on LIBS technology is in its infant stage and it has a high potential for utilization in and outside Korea due to its excellent economic efficiency.

Intelligent Tuning of the Two Degrees-of-Freedom Proportional-Integral-Derivative Controller On the Distributed Control System for Steam Temperature Control of Thermal Power Plant

  • Dong Hwa Kim;Won Pyo Hong;Seung Hack Lee
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.78-91
    • /
    • 2002
  • In the thermal power plant, there are six manipulated variables: main steam flow, feedwater flow, fuel flow, air flow, spray flow, and gas recirculation flow. There are five controlled variables: generator output, main steam pressure, main steam temperature, exhaust gas density, and reheater steam temperature. Therefore, the thermal power plant control system is a multinput and output system. In the control system, the main steam temperature is typically regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. However, strict control of the steam temperature must be maintained to avoid thermal stress. Maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature versus changes in fuel flow rate, difficulty of control of the main steam temperature control and the reheater steam temperature control system owing to the dynamic response characteristics of changes in steam temperature and the reheater steam temperature, and the fluctuation of inner fluid water and steam flow rates during the load-following operation. Up to the present time, the Proportional-Integral-Derivative Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on the characteristic comparison of the PID controller and the modified 2-DOF PID Controller (Two-Degrees-Freedom Proportional-Integral-Derivative) on the DCS (Distributed Control System). The method is to design an optimal controller that can be operated on the thermal generating plant in Seoul, Korea. The modified 2-DOF PID controller is designed to enable parameters to fit into the thermal plant during disturbances. To attain an optimal control method, transfer function and operating data from start-up, running, and stop procedures of the thermal plant have been acquired. Through this research, the stable range of a 2-DOF parameter for only this system could be found for the start-up procedure and this parameter could be used for the tuning problem. Also, this paper addressed whether an intelligent tuning method based on immune network algorithms can be used effectively in tuning these controllers.

  • PDF

Electric Circuit Analysis for PV Array on Short-Circuit Failure of Bypass Diode in PV Module (PV모듈의 바이패스 다이오드 단락 고장 시 태양광어레이 회로 특성분석)

  • Lee, Chung-Geun;Shin, Woo-Gyun;Lim, Jong Rok;Hwang, Hye-Mi;Ju, Young-Chul;Jung, Young-Seok;Kang, Gi-Hwan;Chang, Hyo-Sik;Ko, Suk-Whan
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.15-25
    • /
    • 2019
  • As the installation of photovoltaic systems increases, fire accidents of PV system grow every year. Most of PV system fires have been reported to be caused by electrical components. The majority of fire accidents occurred in combiner box, which is presumed to be short-circuit accidents due to dustproof and waterproof failures or heat deterioration of blocking diode. For this reason, the blocking diode installation became optional by revised PV combiner regulation. In this paper, according to the revised regulation, reverse current that generated by voltage mismatch was measured and analyzed in PV array without a blocking diode. The factors that cause voltage mismatch in array are assumed to be shaded PV module and short circuit failure of bypass diode. As the result of experiment, there is no reverse current to flow under shading condition in module, but reverse current flows on the failure of bypass diode in module. According to the module's I-V characteristic curve analysis, open voltage was slightly reduced due to operation of bypass diode in shading. However, it showed that open circuit voltage has decreased significantly in the failure of bypass diode. This indicates that the difference in open voltage reduction of voltage mismatch factor causes reverse current to flow.

A Polarization-Switchable Microstrip Patch Antenna Using Corner Slots on Ground Plane and PIN Diodes (모서리 접지면 슬롯과 PIN 다이오드를 이용한 편파 변환 마이크로스트립 안테나)

  • Park, Chul-Woo;Lee, Tae-Hak;Choi, Jun-Ho;Yoon, Won-Sang;Pyo, Seong-Min;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.769-777
    • /
    • 2010
  • In this paper, a switchable circularly polarized microstrip patch antenna using PIN diodes and corner slots on ground plane is proposed at 2.4 GHz. The proposed antenna has a square microstrip patch and ground plane that consists of two pair of slots and PIN diodes. The electrical lengths of the slots are adjusted by using the switching characteristic of the PIN diode, so the polarization of the proposed antenna can be switchable between linear, left-handed(LH) and right-handed(RH). By separating the ground plane for the DC bias, the size reduction effect is also obtained. When the proposed antenna is operated as linear polarization, the return loss and impedance bandwidth are 15 dB, 59 MHz, and when operated as LH and RH polarization, the minimum axial ratio and 3-dB axial ratio bandwidth are 1.17 dB, 1.67 dB, 28 MHz, and 32 MHz, respectively.

Thermo-mechanical Behavior Characteristic Analysis of $B^2it$(Buried Bump Interconnection Technology) in PCB(Printed Circuit Board) (인쇄회로기판 $B^2it$(Buried Bump Interconnection Technology) 구조의 열적-기계적 거동특성 해석)

  • Cho, Seung-Hyun;Chang, Tae-Eun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.2
    • /
    • pp.43-50
    • /
    • 2009
  • Although thin PCBs(Printed Circuit Boards) have recently been required for high density interconnection, high electrical performance, and low manufacturing cost, the utilization of thin PCBs is severely limited by warpage and reliability issues. Warpage of the thin PCB leads to failure in solder-joints and chip. The $B^2it$(Buried Bump Interconnection Technology) for PCB has been developed to achieve a competitive manufacturing price. In this study, chip temperature, package warpage, chip stress and solder-joints stress characteristics of the PCB prepared with $B^2it$ process have been calculated using thermo-mechanical coupled analysis by the FEM(Finite Element Method). FEM computation was carried out with the variations in bump shapes and kinds of materials under 1.5W power of chip and constant convection heat transfer. The results show that chip temperature distribution reached more quickly steady-state status with PCB prepared with $B^2it$ process than PCB prepared with conventional via interconnection structure. Although $B^2it$ structures are effective on low package warpage and chip stress, with high strength bump materials arc disadvantage for low stress of solder-joints. Therefore, it is recommended that optimized bump shapes and materials in PCB design should be considered in terms of reliability characteristics in the packaging level.

  • PDF

Analysis of residual stress of Nitinol by surface Polishing Method (표면 연마 방법에 따른 니티놀 잔류응력 분석)

  • Jeong, Ji-Seon;Hong, Kwang-Pyo;Kim, Woon-yong;Cho, Myeong-Woo
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.51-56
    • /
    • 2017
  • Nitinol, a shape memory alloy (SMA), is manufactured from titanium and nickel and it used in various fields such as electrical applications, micro sensors. It is also recommended as a material in medical for implant because it has excellent organic compatibility. Nitinol is intended to be inserted into the human body, products require a high-quality surface and low residual stress. To overcome this problems, explore electrolyte polishing (EP) is being explored that may be appropriate for use with nitinol. EP is a particularly useful machining method because, as a non contact machining method, it produces neither machining heat nor internal stress in the machined materials. Sandpaper polishing is also useful machining method because, as a contact machining method, it can easily good surface roughness in the machined materials. The electrolyte polishing (EP) process has an effect of improving the surface roughness as well as the film polishing process, but has a characteristic that the residual stress is hardly generated because the work hardened layer is not formed on the processed surface. The sandpaper polishing process has the effect of improving the surface roughness but the residual stress remains in the surface. We experimented with three conditions of polishing process. First condition is the conventional polishing. Second condition is the electrochemical polishing(EP). And Last condition is a mixing process with the conventional polishing and the EP. Surface roughness and residual stress of the nitinol before a polishing process were $0.474{\mu}mRa$, -45.38MPa. Surface roughness and residual stress of the nitinol after mixing process of the conventional polishing and the EP were $1.071{\mu}mRa$, -143.157MPa. Surface roughness and residual stress of the nitinol after conventional polishing were $0.385{\mu}mRa$ and -205.15MPa. Surface roughness and residual stress of sandpaper and EP nitinol were $1.071{\mu}mRa$, -143.157MPa. The result shows that the EP process is a residual stress free process that eliminates the residual stress on the surface while eliminating the deformed layer remaining on the surface through composite surface machining rather than single surface machining. The EP process can be used for biomaterials such as nitinol and be applied to polishing of wafers and various fields.

Characteristic Intracelluar Response to Lidocaine And MK-801 of Hippocampal Neurons: An In Vivo Intracellular Neuron Recording Study

  • Choi, Byung-Ju;Cho, Jin-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.3
    • /
    • pp.297-305
    • /
    • 1998
  • This study used in vivo intracellular recording in rat hippocampus to evaluate the effect of lidocaine and MK-801 on the membrane properties and the synaptic responses of individual neurons to electrical stimulation of the commissural pathway. Cells in control group typically fired in a tonic discharge mode with an average firing frequency of $2.4{\pm}0.9$ Hz. Neuron in MK-801 treated group (0.2 mg/kg, i.p.) had an average input resistance of $3.28{\pm}5.7\;M{\Omega}$ and a membrane time constant of $7.4{\pm}1.8$ ms. These neurons exhibited $2.4{\pm}0.2$ ms spike durations, which were similar to the average spike duration recorded in the neurons of the control group. Slightly less than half of these neurons were firing spontaneously with an average discharge rate of $2.4{\pm}1.1$ Hz. The average peak amplitude of the AHP following the spikes in these groups was $7.4{\pm}0.6$ mV with respect to the resting membrane potential. Cells in MK-801 and lidocaine treated group (5 mg/kg, i.c.v.) had an average input resistance of $3.45{\pm}6.0\;M{\Omega}$ and an average time constant of $8.0{\pm}1.4$ ms. The cells were firing spontaneously at an average discharge rate of $0.6{\pm}0.4$ Hz. Upon depolarization of the membrane by 0.8 nA for 400 ms, all of the tested cells exhibited accommodation of spike discharge. The most common synaptic response contained an EPSP followed by early-IPSP and late-IPSP. Analysis of the voltage dependence revealed that the early-IPSP and late-IPSP were putative $Cl^--and\;K^+-dependent$, respectively. Systemic injection of the NMDA receptor blocker, MK-801, did not block synaptic responses to the stimulation of the commissural pathway. No significant modifications of EPSP, early-IPSP, or late-IPSP components were detected in the MK-801 and/or lidocaine treated group. These results suggest that MK-801 and lidocaine manifest their CNS effects through firing pattern of hippocampal pyramidal cells and neural network pattern by changing the synaptic efficacy and cellular membrane properties.

  • PDF